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Abstract

We demonstrate how relative equilibria of a vibrating molecule, which are families of principal periodic orbits otherwise known as nonlinear
normal modes, can be used to describe the global polyad structure of vibrational energy levels. The classical actiorfEtegmgbuted
along these orbits at different energesorresponds to the polyad quantum numivep that the energl(n) of different relative equilibria
describes the splitting of-polyads. Further information on the internal polyad structure can be driven from the stability analysis of relative
equilibria. We use the ozone molecule as a concrete example wipnlyads or “hyperpolyads” should be distinguished from the well-
known polyads of the 1:1 stretching mode resonance; the stretching polyads are structural elements of hyperpolyads. We give dynamical
interpretation of the relation between relative equilibria anublyads based on the normal form reduction in the limit of small vibrations
near the equilibrium.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction try groupG. Let g; € G (with parameter € R) be a one-
parameter continuous subgroup@fA phase curve of our
Inthis article we intend to describe the global polyad struc- system which coincides with thgroup orbitof the action of
ture of the vibrational levels of ozone. We consider the classi- ¢, on P is called relative equilibrium (RE), see Appendix 5C
cal mechanical analogue of the vibrational molecular system of [1a] and Chapter 3.3 of [1b]. Reduction of the symmetry
and use the results of the qualitative analysis of this classicalgroupg, maps such phase curves to equilibria of the reduced
analogue in order to characterize the polyad structure of thesystem.
original quantum system. After specifying the dynamical or  we describe the RE of ozone first as “short” periodic orbits
polyad symmetry of our system, we find its relative equilibria and use their action-energy diagram to describe the polyad
(RE), which provide the framework of the qualitative study. structure. Subsequently, we normalize the classical system
Definition of relative equilibriumConsider a Hamilto-  and uncover the explicit relation of RE to the polyad integral
nian dynamical system with phase sp&tand Lie symme-  of the normal form. Finally, we quantize the normal form and
compare the results to the ab initio energy levels.
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system is invariant with regard to rotations of the laboratory equations of motion for the system with Hamiltoniathat
fixed frame,G = SO(3),g; = SO(2), and RE correspond to ¢, acts as a rotation on the phase sdﬁ%.

rotation aboutstationary axegla,2] Due to additional fi-

nite symmetries, the molecule has usually several equivalentl.2.2. Reduction of dynamical symmetry

stationary axes. Molecular spectroscopists have recognized In general, the Poisson brackig#®), n} does not van-
long ago that such axes manifest themselves in the quanturrish unlesss = 0. We assume, however, that the higher or-
spectrum agdevel clusterq3]. Applications[4,5] normally dersH®) areapproximately Ginvariant. More precisely, as-
study the reduced system, for which stationary axes of rota-suming that{H), n} for s > 0 are small, we camormal-
tion become equilibria. For each non-zero value of the length ize H so that all termsK() in the transformed Hamilto-

j of the total angular momentum, the reduced phase space isiian ‘H Poisson commute witln. The normal form¥H is,

a 2-spher§§. The reduced Hamiltonian is a function on this therefore, strictlyG-invariant. The canonical transformation
space. It is often calletbtational energy surfac] and is L : H— H is a near unity transformation which becomes
depicted as a deformed sphere whose maxima, minima, oridentity whene — 0[7]; in particular,£© = HO). Like the

saddle points represent RE. original HamiltonianH, the normal form# is ane-series.
The most practical and direct method of normalizing such
1.2. Vibrational relative equilibria series is the Lie series meth@8a—d] In most cases with

K > 1, the serieg{ diverges when taken to unreasonably

We can extend our definition of RE by allowing that the high orders (see, for example, Appendix 7[&&]). Con-
symmetryG is not necessarily strict, but is an approximate Seduently, we have to truncat¢ and specify conditions at

dynamical symmetry. This extension is particularly useful in Which such truncated normal form is useful. Normally we
the study of molecular vibrations. restrict the energii, the value of, and/or the perturbation

scalee.
By construction, the Hamiltonian functigns an integral
of motion of the normalized system. We can, therefore, reduce
this system at each given valuerof- 0, so that the value of
n becomes a parameter. Tregluced Hamiltoniar#,, is the
normal form? expressed as a function on the reduced phase
_ (0 1) 2 17(2) spacep,. .
H=H"+el" +eH" + - In the case of the resonance condition 1:1:1, the re-
duced phase space is the complex projective sfigee 1.
in displacementg; and conjugate momenja, whoseterms  Dynamical variables of the reduced system are quadratic
can be distinguished by the uniform smallness parameeter polynomials in ¢, p) which Poisson commute with and
The quadratic part dfl is generate a Poisson algebra&y(In this paper we will en-
counter space§ P2 andC PL.
K K The reduced phase space of the two-mode syskem @)
H(o) _ }Z 2 2\ . A % . .. .
=3 wk(g; + pr) = Z wiNk, with resonance 1..1 is a 2-sphege which is |somorphlg to
k=1 k=1 CPL[9]. This basic case has, of course, been studied in great
detalil, notably in application to the éhon—Heiles system
whereK is the number of vibrational degrees of freedom [10] and its molecular analogu¢®1], and 1:1 resonant vi-

1.2.1. Resonances

The molecular vibrational Hamiltonian in the case of small
vibrations about a well-defined molecular equilibrium (the
case of “rigid” molecules) is a power series

and frequencies; : wp : --- I wg Obey, approximately or  prational subsystems of polyatomic molecyle. Since the
exactly, theresonance conditiomy :mz : ---:mg, where  reduced system is equivalent to the reduced rotational system
my are positive integers. (Note that hereare classical ac-  (seeAppendix A.4, we use the analysis described briefly in
tions which quantize as, — Ni + 3, whereN; = 0, 1, 2, Section 1.1

etc.) The resonance condition defin@sFor example, con-
dition 1:1:---:1 results inG = SU(K). The subgroug; is 1.2.3. Polyads and polyad Hamiltonians
given by the flowy;, of the vector fieldX,, of the Hamiltonian The termpolyad quantum numbés now widely used in
molecular spectroscopy to label a relatively isolated aggre-
K gation of vibrational statdd 3]. For example, two stretching
1 2, 2
n= > ka(qk + pp)- modes of an AB molecule often have nearly the same fre-
k=1 quenciesw; andws and can, therefore, be considered as a
1:1 system mentioned above. A stretching polyad of such
ComparingH® andn, we note that frequencies; in the molecule is labeled by, = n1 + n3, whereny andngz are
linearized HamiltoniarH(®) are approximated in by inte- numbers of quanta in each of the stretching modes. The
gersmy. Furthermore, it is often convenient to rescale energy polyad number can be extended to include the bending vibra-
so, thatH@w~1 ~ n, wherew is the mean characteristic vi-  tion as well. Frequently, there is a near 1:2 resonance between
brational frequency of the molecule. We also find from the stretching and bending modes. Then the polyad number can
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be defined as
Nl:%:l =n1+ %nz + n3.

Such number is often used for triatomic molecul®&4]. If
the normal mode frequencies of ABan be approximated
by integersky:ko:k3, we can use the polyad number

Niyikpiks = kany + kono + kans.

According to this general definition, the numbér.;.» should
be used instead of the abomq:%:l.

In this work, we will use the polyad number (cf.
Appendix A.J)

1)

which we call thehyperpolyad numbeiVe propose to clas-
sify quantum states first usingand then, if possible, other
guantum numbers. This principle works very well in the
ozone molecule where all known assigned vibrational lev-
els[15a,bf can be easily and unambiguously grouped into

n = N1.1:1 = ni + nz + ns,

2869

1.2.4. Modes and periodic orbits

The spectroscopic concept of “mode” is often confusingly
vague. The common practice of opposing “local” and “nor-
mal” modes can be a good example. The concept of RE helps
to bring the situation in better order.

Consider the standard bound molecular system of small vi-
brations described in terms of small displacemerasd cor-
responding conjugate momemtal he zero-order vibrational
Hamiltonian is a sum of two positively definite quadratic
forms, the kinetic energy and potentiaV. The phase space
variables ¢, p) can be chosen so that boktp) andV(q) are
diagonal. Such variables corresponchtirmal modeg$18].

The presence of symmetry often simplifies the task of diag-
onalization. Thus ozone and molecules Afave only one
asymmetric displacemegt which defines the normal mode
vz unambiguously. The form of the two symmetric modes
andv depends on the particuldafp) andV(q).

The dynamical concept of mode begins with the theorem
of Weinstein[19]. Consider a stable equilibrium of a Hamil-
tonian system wittK degrees of freedom, and suppose that
harmonic frequencies are incommensurate, i.e., there are no

n-polyads, even though the resonance condition for ozone isresonances. Then near the limit of linearization, i.e., at ener-

much closer to 5:3:5 or 2:1:2 than to plain 1:1:1.
Polyad Hamiltoniansre used in spectroscopy to describe

internal structure of polyads. These spectroscopic Hamiltoni-

ans are calle@ffectiveandmodelto emphasize the absence
of explicit inter-polyad interaction terms and the liberty in

giesh close to the equilibrium enerdyy, the system has a set

of K energy-dependent families of periodic trajectories which
are defined by the nonlinear terms of the local Hamiltonian.
These families are basic vibrational modes of the system near
the given equilibrium. To distinguish them from tenormal

the choice of resonance condition, respectively. Parametergnodes defined above, it was suggested to use therterm

of the polyad Hamiltonian are often treated as phenomeno-

linear normal mode$20a—c]. We realize immediately that,

logical spectroscopic constants, whose values are obtained by fact, these modes are nothing but vibrational RE.

fitting experimental data. To further confuse the uninitiated,

In a resonant system, the number of nonlinear normal

typical resonance conditions (=models) and related polyad Modes (=RE) can be a priori greater than the number

Hamiltonians are traditionally named after Fermi, Darling-
Dennyson, and otheffd6]. The simplest example is again
the 1:1 Hamiltonian, which is analogous to an effective rota-
tional Hamiltonian. (Recall that the “rotational polyad” is a
multiplet of levels with the same angular momentum quan-
tum numbed, seeAppendix A.4and[17].)

Going back tdsection 1.2.2ve can see that (i) theolyad
approximatioramounts to the dynamical symmetry assump-
tion given by the resonance condition and followed by re-
duction, (ii) polyad Hamiltonians are nothing but reduced
Hamiltonians?#,,, (iii) vibrational dynamics of the reduced

of normal modes (coordinates) [20a—c]. Again, the pres-
ence of symmetry can greatly simplify the task of char-
acterizing these RE. Thus recall the textbook example of
the eight RE of the two-dimensional éhon—Heiles system
[10,20a—c] a nonlinear 1:1 resonant oscillator with symme-
try D3, and its molecular analogue—thrq molecular ion
[11].

As the energyh gets further fromig, nonlinear normal
modes (=RE) can bifurcate, and in particular, their number
can increase. These bifurcations correspond to bifurcations
of the equilibria of the reduced system. The new (families of)

system defines internal polyad structure. Spectroscopists conPeriodic trajectories are, therefore, also RE. Different sets

struct quantum polyad Hamiltonia#%, using terms which

preserve the polyad number. In order to commute with quan-

tum operatomn; terms inH, are restricted to have creation-

annihilation operators of certain degree and type. Thisis anal-
ogous to the classical construction of the ring of the dynam-

ical invariants (seéppendix A.2.

2 The work[15b] gives essentially almost the same potential g4 5a]
The latter was obtained using MORBID, which made a few approxima-

tions in the kinetic energy operator. These were “absorbed” in the potential.

The new paper removed this deficiency using the “Exact Kinetic Energy”
operator.

of RE correspond to qualitatively different internal polyad
structures. The classic example of an RE-bifurcation is the
so-called normal-to-local mode transition, which happens in
ozone wherh is very close tdig. We will discuss this bifur-
cation in detail.

At very low energies, the ozone molecule has three non-
linear normal modes which correlate with the three normal
modes, symmetric and antisymmetric stretchingand vs,
and bending,. At slightly higher energies, it also has two ex-
tra equivalent RE, which spectroscopists call “bond length”
modes orlocal modeg21]. These modes are close to the
vibration of the individual GO bonds.
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Like any stable periodic trajectories, stable RE of period relation of these orbits to relative equilibria. We normalize
Tre(n) can undergo periodbifurcations which involve tra-  the initial three-mode Hamiltonian ¢§f5a] and analyze RE
jectories of periodsTre(n). Within the framework of the  as equilibria of the reduced syste®ection 4. Finally we
polyad approximation, we can only describe period-1 bifur- compute quantum levels in two ways, using local lineariza-
cations. Such bifurcations affect the internal structure of the tion near stable periodic orbitSéction 3.3and by quantiza-
hyperpolyad but not its validity. Cascading higher-period bi- tion of the global normal formSection 4.%. We reproduce
furcations signal the destruction of hyperpolyads and the on- adequately all quantum levels assignedliba—c]and thus
set of chaos. However, when suggesting the limits of the hy- demonstrate the validity of the polyad approximation. Sub-
perpolyad approximation for the classical system, we should sequently, we address the main problem facqd%a,b,22]
also consider that the quantum analogue system is, genernamely the assignment of quantum levels computed numer-
ally, more robust to chaos, and our approximation has a goodically. We suggest a direct method of computing the hyper-
chance to stretch further than we would expect classically. polyad number for a given wavefunctioBdction 3.

This work should, of course, be regarded in the context of
1.2.5. Assignment of quantum states numerous publications on the vibrational levels and dynamics

Classical textbooks on molecular vibrations and spec- of triatomic and polyatomic molecul¢®3,24a—f] including
troscopy[16,18] usually suggest normal modes for vibra- more recent work on ozorj@é5a—c,25,26]In particular, we
tional energy level assignment. More recently, the local like to mention the work by Lu and Kellmg@4], who study
modes of a number of hydrogen-bonded molecules and ozoneozone on the basis of a 2:1:2 model polyad Hamiltonian.
were suggested as more “physicg1]. On the other hand,  They focus mainly on stretching polyads (&ction 4.3and
both nomenclatures can be considered formally equivalent inapply the standard analysis based on the angular momentum
the limit of small distortions where local and normal modes analogy{6,12,5]
are linear combinations of each other and there is linear rela-  Contrary to[14], we derive our polyad approximation
tionship between the corresponding quantum numbers. Thefrom the full vibrational Hamiltonian, which describes all ex-
current spectroscopic practice is to present both local and nor-perimentally known states of ozone. The same computation
mal mode quantum numbers and specify their relationship. was independently attempted by JoygRX], who obtained

Dynamical approach to assigning quantum states is basedeven better reproduction of the numerical quantum energies
on localization near RE or, in general, other dynamically of [15a,b] However, far from trying to compete wifi5a—
invariant subspaces. Consider a sufficiently stable relative c] in accuracy of reproduced quantum energies, we consider
equilibrium I7, such as the local mode RE of ozone. Take a our classical study and the subsequent quantization as a basic
projectionr], of the periodic orbit/T in the original phase  qualitative tool of dynamical characterization of computed
spacéR(ZK on the configuration spatli%’< Whenaquantum  states. We like to focus mostly on the global hyperpolyad
wavefunction is localized nedr,,, its nodes follow’7,. Inthe structure and on the problem of level assignment.
limiting case the number of such nodég equals the polyad
quantum numbeN. When N7 is less tharN, other degrees

of freedom are involved in the direction transversaditoYet, 2. Ozone molecule
if Ny is sufficiently close tdN, the node pattern can still re- )
main a regular lattice which follow& . For such state¥ ; is The most abundant isotopomer of ozone molecule has

clearly a good quantum number. Of course, not all states fall three identical atoms and isosceles equilibrium configuration
into such category. Other states can, possibly, be assigned ivith two equal bond lengths;> = r23 = r, and the bond

terms of other stable RE, and some strongly delocalized statenglea.. Vibrations of this molecule are described most nat-
would remain without any meaningful dynamical assignment urally in terms of two dimensionless bond length displace-

excepfor the hyperpolyad numbé¢. Thus,our main propo- ~ Mentséy andéz, such that

sition is to begin with the hyperpolyad assignment of all

states, and then classify them further where it is possible. 712 = re(1+ &), ra3=r.(1+&2),

1.3. Outline and the bond angle displacemenin these coordinates, the

kinetic energy ternT in the Hamiltonian
The paper has three main directions. In order to uncover
the existence of hyperpolyads, we first study numerically (see H = 5T(E 1, o, pa) + V(61 @, §2) (2a)
Section 3 the main periodic orbits of the vibrational sys- Mmre
tem of ozone with Hamiltonian ifL5a,b] We then show the  has the form

T 24 (1+&)% + (1+ &) — (14 £1)(1 + &) cosfr, + @) 2
=it (L+ 0)2(1+ 822

Pl + ED)n1 + (1 + E)n2), (2b)

o T COStee + a)nin2

B sin(ee + @)
(1+&)(1+&2)
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wherens, n2, and p, are momenta conjugate #a, &2, and Table 1

«, respectively. The potential functioni(¢1, o, £) was de- quiltonian of ozone wit_h vibrational potential of R¢lL.5a] expressed
termined very accurately in the recent work by Tyuterev et using normal mode coordinates
al. [15a] from fitting all known experimental data. This po- ©Order  Coefficient  Term Coefficient  Term
tential has good global properties and the dissociation en- € 11323600 3(a2 + p?) Symmetric stretch
ergy of 9450 cm! which is in good agreement with experi- 7146150 13+ pd) Bending
ment. An improvement of this potential was reported later in 10869425 1@+ rd) Asymmetric stretch
15b].
[ Tr]1e Hamiltonian(2) is invariant with respect to bond per- € —4026499 4} —1030595  q1p3
mutationC, and time reversal™. These two finite symme- 2041346 43 2049931 g2pf
try operations generate a group of order four with structure —849418  q145 ~525573  q2p3
Zy x Z». Appendix B gives a detailed description of this —19522643  ¢143 —1348096  ¢2p3
group and of its implications. 8.92844  43q; —4143463  qipip>
For the normalization purposes we represent the Hamil- 6582223  g242 —1177458  qopip2
tonian(2) as a power serield(q, p) in the near equilibrium 6.36668  q1p3 1326030  g3p2ps
normal mode displacemengs= (g1, ¢2, ¢3) and conjugate 2445093 q1p2 498473  qapips
momentap = (p1. p2. p3)
€ 0.23935 4} 0.16508  ¢2p?
H =2+ ) + (3 + ) + (3 + ) 221248 003366 g}
436140 43 0.39659  ¢3p3
+€Hy + €?Hy + Ha + - - -. -4.01685  ¢iq2 -0.35362  q1923
3
The totally symmetric coordinateg, and g» depend on :;'ijﬁ:i iz :z'iﬁz dzprbz
£1 + & anda; the symmetric stretch; has a predominant ‘ 1192 ' dspibs
contribution due t&; + & while the bending coordinaig 1292855 4145 —104417  gopap2
depends mostly oa. The anti-symmetric stretch coordinate —1331552  q1q243 158181 q3pip2
g3 is proportional to £ — &). The zero order term in the ~0.26197 4343 094469 q1g2p5
seriesH(q, p) is in the standard diagonal quadratic form. 119930 455 —0.36182  q192p3
Note, that unlike in some other ABnolecules, such as wa- 1.80520  ¢%p3 047273 42pip2
ter, the symmetric stretch frequeney is larger than that of -0.13517  ¢2p3 0.27819  g2q3p1p3
the asymmetric stretch. In this study we expandégl p) to —0.23128  ¢2p? 0.74005  g2g3p2p3
degree 6 (orde#?); cubic and quartic terms in this series are 042515  g2p? —0.41046  qig3paps

listed inTable 1

CONTENT([30],2 which can be easily adapted for our pur-
poses by introducing a free dummy parameter the equa-

. Relativ ilibri rincipal periodic orbi . .
3. Relative equilibria as principal periodic orbits tions of motion

We begin with direct numerical study of periodic or- oH ) oH
bits which correspond to relative equilibria (RE). As fol-  4i = - Pi= o +Api, =123
lows from Section 1.2 we should be interested primarily
in the energy—action characteristics of these orbits. |ndeed,We norma”y start from a normal mode and continue the pe-
action corresponds to classical polyad numbeand the riodic orbit by allowing the period to change and calculating
polyad structure is given by the RE energies at fixed  the energy and action. The parameteis also varied but
We argue that our periodic orbit analysis justifies the ba- maintained around zero. In this way one is able to produce

sis for USing the 1:1:1 resonance model. This agrees Wltha graph of the energy against the action for every periodic
Lu and Kellman[14], who did not find low energy bifur-  orhit, seeFig. 1

cations in their 2:1:2 model except for the local mode bi-
furcation, which can be equally well described by the 1:1:1 3.2 Bifurcation of periodic orbits
model.

Atvery low energies, the three periodic orbits (POs) corre-
3.1. Energy—action characteristics late with the three normal modes, d€g. 1; the bending PO
has the minimum energy at given fixed actigithe symmet-
Continuation of periodic orbits of molecular systems has ric stretch PO stays on top, and the asymmetric stretch PO
been done by a number of authors, notably Prosmiti and

Farantog28]. We do it in a somewhat diﬁer?nt cqnte{ZQ]. 3 This package is based on the other versatile continuation package AUTO
We opted for the very well-developed continuation package and provides extremely flexible and powerful graphic interface.
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I local modes, the child branches stay so close to the parent that

12 1 they can be hardly distinguishedfig. 1. Another difference
is that this bifurcation breaks tHE symmetry and noCo.
10 L i The two new PO remain symmetric with regardipbut are
- mapped into each other by.
£ . | Comparing these results to a computation with a more re-
%5 [ cent potentia[15b], shows that the system of POs remains
l:; essentially unchanged (see below, endgy cm™1 and ac-
o 6 1 tion n).
)
[2}
& 4r 1 :
Point Ref.[15a] Ref.[15b]
2t ] A 1336 124 1361 1.27
B 898 126 872 1.22
o B , , , [ l ‘ 973 136 944 1.32
0 2 4 6 8 10 12 14 C 7454 783 7396 7.78
Classical action n (in units of 2r) 7774 823 7564 7.99
D 10957 1004 7893 7.20

Fig. 1. Action—energy diagram for principal periodic orbits (PO) of ozone.

Bold and fine lines indicate stable and unstable PO, respectively; circles hel hat th f DO .
denote bifurcations; dotted line shows the average polyad engg(n), Nevertheless, we can see that the energy of point D varies

which is subtracted in subsequent figures. largely even for a slightly different potentidl5b]. Such sen-
sitivity may pointto compromised global high-energy proper-
lies slightly below it. The first bifurcation, which happens ties of potential§15a,b] and makes continuation into higher
in 0zone, is the well-known bifurcation of the asymmetric €nergy—action values questionable.
stretch PO resulting in normal-to-local mode transifib4. To summarize, we detected a number of bifurcations of
This bifurcation is indicated by point A iig. 1with energy ~Pasic” periodic orbits of ozone, which can potentially dam-
E = 1336 cnTlandactiom = 1.24, whichisevenbelowthe age the polyad approximation. However, most of them are
ground state energy of 1451 cth The asymmetric stretch of very local character (B and C) and are unlikely to be pro-
PO loses stability and the two stable equivalent local-mode hounced in the quantum spectrum, or happen very high in
PO branch out. The bifurcation breaks the bond permutation €nergy. The general conclusion is that the onset of chaos and
symmetryC,. The two local-mode PO remain symmetric the breakdown of our global 1:1:1 hyperpolyad approxima-
with regard to the time reversal symmeffybut are mapped tion should happen fat > 10; classical dynamics is suffi-
into each other by'». Continuation of the unstable PO and  ciently regular (most of the tori are still present) at lower
the two new POs is shown Fig. 1by a fine line and asingle ~ @nd corresponding energies.
bold line, respectively. As the actionincreases further, the
energy separation between the unstable asymmetric stretcl8.3. Local quantization near stable RE
PO and the local-mode POs increases, stability of the two
local-mode POs grows and quantum localization near them  Quantum states localized near a stable periodic orbit (PO)
becomes possible. Since these POs are equivalent due to thean be characterized using a local approximation of our
C> symmetry of the system, the localized quantum states form Hamiltonian near the orbit. We can do this even when normal-
doublets which are readily observed experimentally. ization is impossible, i.e., when the polyad approximation is
Next, there are two pairs of period doubling bifurcations. no longer valid. In the simplest case, we consider the ground
Point B corresponds to the sequence of two bifurcations of state of the harmonic approximation, i.e., the most localized
the bending PO, while point C marks the two bifurcations of state described iBection 1.2.5
the local-mode PO. In these bifurcations, each PO becomes Computing harmonic frequencies’( »”) of oscillations
briefly unstable thus bringing in some irregularity in the dy- in other degrees of freedom about the “central” PO comes
namics. It is hard to judge from the limited analysis given at no additional cost because continuation programs, such as
here about the full impact of these bifurcations. It seems that CONTENT, return the eigenvalues of the monodromy matrix
they are unimportant to the global polyad structure. This will and the stability indexes’( s”) of the PO. We can, therefore,
be further justified by the comparison to quantum levels. find the estimates of harmonic frequencies in the directions
Analyzing the energy—action diagram kig. 1 further, transversal to the PO. Note that' (w”) for a stable PO are
we observe a bifurcation of the symmetric stretch PO (point real numbers whose signs are given by the stability indexes
D) at E = 10857 cnt! andn = 10.04. This is a pitchfork ~ +1 or —1.
bifurcation which produces two new equivalent POswhilethe  Quantization in this harmonic approximation is straight-
parent PO loses stability. However, unlike in the case of the forward. The action integral along the PO equadst+ .,
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Table 2 T T T T T T
EnergiesEre in cm™1 of purely bending quantum states (@, 0) of ozone

computed using the harmonic approximation near the bending RE 2

v2 ERe A v2 ERe A

1 701 0 6 4164

2 1399 0 7 4847 1

3 2095 0 8 5527 2

4 2788 0 9 6202

5 3477 1 10 6874

A: Ere — Eopsfor the energie€opsof the assigned quantum leveldirba].

where the Maslov’s correctign for all RE is% and does not
change throughout the range of action-energies we consider.
Actions for the two transversal oscillations are+ % and

n” + % Hereng, n’, n” are integers, and andn” are small.
This defines the EBK tori situated nearthe PO, and theenergy -2
of the corresponding quantum states

Reduced energy E(n) 10% em™
o

0 2 4 6 8 10 12

roomy 1 1, 1 1 1m0 g 1
E(no.n’,n") = Epo(no + 3) + o'(n" + 3) + " (n" + 3), Classical action N aegicq (in UNts of 2)

whereEpg is the energy—action characteristics of the PO in Fig. 2. Energies of periodic orbits (PO) and assigned quantum levels of
question. ozone. Bold and fine solid lines indicate stable and unstable PO, respectively;

Results of such quantization for the bending PO are com- c_ircles mark bifurcations. Quantum Ievels_ are compute[d&a];_left- and

. . rightward dashes correspond to symmetric and antisymmetric levels. Com-

pared to the alss_lgned quantum 'eV?'S fidsa] in Table 2 . paring toFig. 1, note that the average polyad enety(n) is subtracted
These levels lie just above the bending PO energy (lowest) inom E(n).
the energy—action diagram, seigs. 1 and 2Agreement for
other POs is less satisfactory. Our simple approximation can-
not account for tunneling in the case of the local mode PO, oscillator quantization rule
and we can only predict the average (unsplitted) energy. The
symmetric stretch PO at highseems to be strongly affected Nelassical= 1 7{
by bifurcation D and the resulting presence of close satel- 2m
lite PO (sed~ig. 1). This makes our harmonic approximation o
ineffective since at least one of the transversal motions is, ob-SUch polyad quantization is compared to the “local” near-
viously, very anharmonic. Nevertheledaple 2shows that ~ RE scheme of the previous sectionAppendix E We can
it is possible to relate relative equilibria, periodic orbits, and NOW Superimpose quantum energy levels and the classical

quantum levels and then continue to higher energies. energy—action diagram of periodic orbits as showhig 2
We see immediately that the energy of RE's embraces the
quantum spectrum correctly and that the latter exhibits a clear
3.4. Hyperpolyad classification of quantum states hyperpolyad structure.

) ) _ ) We should also point out that assignment of the polyad

Inthe previous section, we saw how certain localized states nymbern does not have to rely on the normal mode assign-

the energy—action diagram for RE and the quantum energyremain physical even when the normal mode assignment is
spectrum of the system. This provides motivation for the rest jmpossible. This is discussed 8ection 5where an alterna-

of the paper and its appendices. tive way of computing and assigning the value of the hyper-
Conventionally, the normal mode quantum numbers are polyad quantum numbet is proposed.

(v1, v2, v3), Where subscripts correspond to our normal
modes. We take all quantum states for which normal mode
assignmentyi, v, vz) was determined ifl 5a]and compute
the hyperpolyad quantum number

3
pdq=v1+v2+v3+§. 3)

4. Relative equilibria as equilibria of reduced
classical Hamiltonian

N =v1+v2+v3 We now follow the approach reviewed 8ection 1.2and
uncover the relation of the periodic orbits studied in the previ-

as defined if1). This number and the classical action integral 0us section to the reduced system. Necessary details of reduc-

nelassicaicomputed for each RE are related by the standard 3- tion and normal form analysis are presentedgpendix A
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Table 3 Table 4
Terms in the first normalized Hamiltoni&h, describing hyperpolyads of Relative equilibria of ozone on the reduced phase snbe,é: values of
the ozone molecule; notation is explained in Appendix A invariants Table A.1lin Appendix A and energy obtained from the first
2 A A normal form#,,, which was computed to order 4
—284040  n? —0.06479  12n 4063312 spsins RE "3 53 X3
2.2 4.3
~189736 nx3  —0.04646  xZs —0.16394  s2n3 ss 0 —1.6026x 107» n—12842x 10"n
> 3 - 2.1529x 10~4n®
—2.30240  ns3 +0.32321  xn3 +0.04978 3 as u 0 0
—-218924  nnz  +0.53257  sina +0.67300  ns} b 0 60194x 10312 —n + 1.8116% 1023
—029380 2 +0.47298  s;?  +1.09409  s2s3 —21533x 10~*n®
RE Value ofH,, (energy)
_ _ _ 2 n
104511 xas3 0.04983  xasan 0.06681  s3n3 ss 113236001 — 5.03156:2 — 1.68437x 10 3n°
+5.12780 x3n3 —0.02121 Sg +0.72853 X353Nn3 as 10869425; — 10.96017%2 4 0.2487%3
-0.94496 52 —0.46372  s15253 +0.63782  xanns b 71461501 — 1.236842 — 1.53112x 10218
—2.31425 s3n3 +0.06086 nZs3 +0.15188 xSsi ForallREsi =so=t1 =1tp =13 =0.
—5.93052  n2 -0.06517  ns? -1.08630  n%n3
-1.97105 2 +0.37455  spxzsy  +1.29031  nnd this characteristics t icall ted act ,
LTATOLT  susy 005827  xan? 061914 sy ;:|;<i':1gre3 is characteristics to numerically computed actions in
—1303191 2 0.10697 52 —0.02940 518 ) .
2 + e " It should be noted that errors in the normal form expres-
—0.16039 "2”3 —0.07270 ”;2 sions forE(n) atn ~ 10 are of the same order as (or superior
+0.04477 —0.71215  s3s3 to) the contribution due to the® term in E(n). This inac-

~0.18590  s3xs curacy of the high order normal form can (at least partly)
be attributed to the globally inaccurate representation of the
initial Hamiltonian in terms of Taylor series near the equilib-

4.1. Reduced Hamiltonian rium, seeSection 6

We normalize the initial Taylor series expanded Hamilto-
nian to ordere* (degree 6 irg, seeTable 1 using standard
Lie series techniqu§Ba—d] The transformed Hamiltonian,
or thefirst normal form

4.3. Stretching polyads of ozone with resonance 1:1

Like in many triatomic molecules, the frequencies of sym-
metric and antisymmetric stretching modes of ozang,
andws are very close to a 1:1 resonance and are known to
form polyads. In order to describe these stretching polyads
within our approach we introduce tisecondadditional ap-
can be expressed in terms of invariants as shoviiabie 3 proximate integral of motion (additional dynamical sym-
We now fix the value ofi and consider it as a parameter. This  metry) n, = n; + n3 and normalize again as explained in
defines the first reduced Hamiltoniaf, as a function on the
first reduced phase spagg ~ CP2.

H, = 923488 + 2088723 + 1634553 + - - -

4.2. Stationary points of(,

Qualitative analysis of possible stationary points of the re-
duced system with Hamiltonigh,, begins with the premise
that#,, isaC» x T invariant Morse function on the reduced
phase spac€ P2. Appendices B and Gsee in particular
Table B.landFig. B.1) explain how symmetry and topology
arguments can be used to find stationary points of such func-
tion. In particular we show that the asymmetric stretch RE
(as) has fixed coordinates @hP?, while symmetric stretch
(ss) and bending (b) RE lie on tiig x 7 invariant circleS?.

When energies are close to 0, the ss and b points corre- ‘ ‘ . . ‘
spond to the symmetric stretch and bending normal modes. ) 0 2 4 6 8 10
The two modes have the same symmetry and mix when Polyad quantum number N
. ” 2
mcrease.s' Position of ss .and b @.P” depends om, see Fig. 3. Comparison of the analytical formulas for the energy—action charac-
Appendlx CandTable 4 Using positions of the three RE we teristics of RE obtained from the normal fofi), and computed numerically

compute their energy—action Ch.araCte.riSE(n) as the value for periodic orbits; ss, as, b, and Is denote symmetric stretch, asymmetric
of H,, (Table 3 atthe corresponding points @Pf and com- stretch, bending, and local stretch RE.

Error in E(N) cm-1




Table 5

Terms in the second normalized Hamilton?dp ., describing 1:1 stretching

polyads of ozone
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H, H), “HP),

714615 n —1.2368 n? —0.015311 nd

395036 ng —8.5391 nng —0.027586  n2n;

—22.708 x2 +4.6181 n? +0.114265  nn?
+1.0654 ngxa -0.082545  n?
—4.0297 nxp +0.197438 nngxo
—2.8380 2 —0.102746  n?x;

X
-13.0319 é -0.022418  n%x;
+0.017961  nx3

+0.116763  nyx3

—0.576685 n
+0.372594 nxsg
+0.122691 X255

+0.052958  x3

Appendix D To ordere? the second reduced Hamiltonian
Hum, = HO +HE +HE +---,

is given inTable 5 Notice that 0< n; < n. It is also con-
venient to use the complimentary quantbty= n — n; (the
“bending mode” action), such that> § > 0.

Analysis of the second reduced system is entirely analo-
gous to that of the rotational energy surfafglsand effec-
tive Hamiltonians on the polyad sphdfe?] (seeSection ).

We look for equilibria (stationary points) of the Hamiltonian
function’, ,, defined on the 2—sphe§5. In the stretching
and bending limitwitley, = n (§ = 0)andn, = 0 (8 = n), re-
spectively, these equilibria lift to periodic orbits in the phase
spacd%?q’ ofthe original system; when @ n; < nthey lift

to 2-tori. The former are, of course, relative equilibria (RE)
which we already studied iBection 4.2 The latter can be
also qualified as RE’s in a broader sense fgggendix A.5.

The limiting “purely” stretching polyad withy = n is at the

top hyperpolyad energy and is represented by the energie
of the three stretching RE, the symmetric, asymmetric, and
local stretching modes, shownhigs. 1 and 2

Relative equilibria o, ,, are analyzed idppendix D.3
The two fixed RE correspond to the critical orbits of thex
T action on the second reduced phase sﬁgéllustrated
in Fig. 4, left. Their energyH, ,, is given inTable 6 In the
limit of n; = n andny = 0 expressions in this table equal
those for stretching and bending RETiable 4 Local modes
bifurcate from the (as) point at a very smal};;, they remain
T-invariant and move on thg-invariant circle as shown in
Fig. 4. Position of these RE ofi2 and the value ot n,
is given inTable 7 Graphic representation G{, ,, in the
regionn > ngrit is shown inFig. 4, right.

4.4. Classification of quantum states based on second
normalization

2875

Fig. 4. Stratification of the second reduced phase sfa¢polyad sphere)
under the action o€, x T (left). Black dots mark fixed points which cor-
respond to relative equilibria (ss) and (as), white dots show local mode
RE. Second normal forr#, ,,, for the 1:1 stretching polyad of ozone with

ns =n = 6 as a function or$? (right). Black and white stripes represent
constant level sets 6, ,, with arbitrarily fixed spacing.

Table 6
Energy of relative equilibria of ozone which correspond to fixed points of
theC, x T symmetry group action on the second reduced phase §§§,g:e

SS ix2 = —ng as xp = ng Term

11323600 10869425 n

—417.7450 —3723275 B
—5.03156 —10.96017 n?
+3.08000 +6.87774 né
+0.71471 +2.84558 52
—1.68437x 103 0.24877 ns
+4.42281x 102 —0.72327 n2s
—5.41770x 102 +0.52393 né?
—3.67798x 1073 —6.47577x 1072 53

The energy is obtained as the value of the second normal#ym com-

Table 7

%)uted to order 4; notethag =r» =0ands =n — ny; > 0.

Local mode stretching relative equilibrium of ozone: critical valug (5)
of n for the local mode bifurcation, coordinate(x, §), which defines the
position of Is on the second reduced phase ssﬁgg and energyE'S(x, 8)
obtained from the second normal fof), ,,, '

Rerit X2 Energy Term
1.24438 124438 133808580
1.13419 013419 83829596 s
0.78983x 1071 106083409 x
—1.19399x 102 —1879975 x2
—1.12134x 1072 —17.66161 x5
—3.56332x 103 —3.56332x 1073 —7.42360 52
3.67745% 104 —0.18968 x3
1.03450x 103 —0.59742 x28
8.20619x 104 —0.07857 x82
2.40667x 10~ 2.40667x 10~ 0.28150 53

. o Solutions are given in terms of powers o= n — ngit > 0 andd = n —
To compare our results for the relative equilibria of the 5, > 0in the last column, e.gugrit = 1.24438+ 1.1341F + - - -.

second normalized system with the known quantum energy
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spectrum of ozonfl5a]we should introduce quantum num-
berN; of the stretching 1:1 polyads. The combined quantum—
classical correspondence rule is

n=N+3 N=01,..., (4a)
ng=N;+1 Ng=0,1...,N. (4b)
Here the value of the classical actian =n — % corre-

sponds to the maximum guantum numbBé&rin the hyper-
polyadN; the half-quantum remains in the bending mode, cf.
Appendix E

The energy—action plot of RE of the second normalized
system is shown ifrig. 5. In the limiting casesi(; = n for
the stretching RE ss, as, and Is, and= 0 for the bending
RE) our curves represent the RE of the first normalized sys-
tem shownirFigs. 1 and 2Whenn > ng > 0, they represent
the energyH,, », of the RE of the second normalized system.

I.N. Kozin et al. / Spectrochimica Acta Part A 61 (2004) 2867—2885

Quantum number N

The curves, representing such RE for the special v%ub%, , _ .

. L. Fig. 5. Energy of relative equilibria, the polyad structure, and quantum
and % of the difference: — n;, are plotted inFig. 5 They levels of ozone. Bold solid lines show the energy of stationary points of
correspond to the uppermost, second top, and third top quan<y,; fine dotted lines show corresponding numeric energy—action data (in
tum 1:1 polyad. The structure of these “small” polyads repli- the scale of the figure they can only be seen for as and Is RE at high
cates the structure of the= n, limit. While the 1:1 polyads entirgy); fine so"ldt"”les 1slh°W éh% e;frgg OL S;atl'.onary plf'”:i{g*f"f -

. . . with n —n, equal to3, 13, and 2; the dashed line marks the poin
overlap partlally In energy’ the RE of meetype remam of the as— Is bifurcation. Short and long ticks show levels assigned
well §epara_ted andthe 1:1 approxmat.lon remains valid inthe iy [15a,b]and computed irSection 4.5 respectively. The base quantity
studied action range. However, the visualization of the cor- 137815+ 914027V — 3.1724N2 — 0.0084978V3 is subtracted.
responding quantum level structure is compromised. DespiteTable 8
the pverlap andthe |ncompleteness of t_he list of observed andEnergiesE of vibrational quantum states of ozone computed using the quan-
assigned quantum levels of ozone provide{d ba,b] several tized second normal forf,, ,, with subtracted zero point energy of 1455.3
doublets of quasidegenerate quantum levels corresponding tag .

> k E(cm™1) State E(cm1)  State E (cm™1)
two equivalent RE of the local stretching mode Is can be seen
near the bottom of 1:1 polyads. A more detailed analysis is 000 1143 211 3855 6 60 4163
_ | -1 polyads. : y 10 010 702 1 43 310 3968 1 61 4436
possible using quantum energiesTiable 8in the next sec- 11 001 1043 1 44 004 4006 5 61 4543
tion. 11 100 1103 O 44 103 4028 6 62 4715
20 020 1400 1 44 202 4146 5 62 141 4799 15
4.5. Quantization of the second normal form 21 011 1728 1 44 301 4253 3 62 4928
21 110 1797 O 44 400 43682 63 4998
. ) 22 002 2059 1 50 050 34771 63 132 5055 19
We quantize our second normal forf, ,, in order 22 101 2112 1 51 3764 63 5181
to detail the global qualitative description of the whole 22 200 2201 0 51 140 3861 3 64 024 5280 14
energy spectrum. As shown iAppendix D.3 invariants 30 030 2095 0 52 4057 64 123 5309 18
(3x2, 352, 312) generate a Poisson algebrawhichisastandard 31 021 2410 252 131 4132 10 63 330 5317 7
) A ) , 120 2488 1 52 230 4251 4 64 5441
50(3) with CaSImlr]Zan. We replace the;e Invarliants by 32 012 2728 2 53 023 4352 6 65 015 5548 29
angular momentum operatorg (Jo, j3) and diagonalizethe 32 111 2788 3 53 122 4402 12 65 114 5558 17
(2j 4+ 1) x (2j + 1) matrix of H,_, (j1. J2. j3) in the stan- 32 210 2887 0 53 221 4520 12 64 321 5568 10
dard basis of spherical harmonic functigrisn). 33 003 3048 2 53 320 4644 0 64 420 5708 6
Of course, we should not forget the obvious limitations oo 102 3086 3 54 0144645 12 65 213 5716 18
4 o 9 e 201 3188 2 54 113 4670 11 66 006 5796 29
of our ClaS.S|CaI normallza:t|0n and the above. quantlza.tlon. 33 300 3289 -1 54 212 4795 12 66 105 5798 14
Both remain correct only in the sense of main (=classical) 40 040 2788 0 54 311 4912 15 65 5820
contributions to the high degree terms. Thus starting with the 41 031 3088 2 55 005 4924 5 65 5962
classical functiorit, ., we have no way to define correct 4% 130 3176 2 55 104 4932 10 66 204 6010 15
ordering of noncommuting operatorg; {J», j3). The best 022 3394 3 54 5039 o6 eo7r
g of g op #1lJ2, J3)- 1h€ D 121 3462 6 55 203 5086 9 65 6102
we can do is to use Symmetrlzed Hermitian combinations. 42 3570 55 302 5180 9 66 402 6217 12
Despite all apprehension, our method provides excellent 43 013 3702 4 55 401 5312 4 66 6361
results shown iffable 8 Increasing errors for higher polyads 43 112 3746 6 55 500 54383 66 600 6498-4

should be explained (at least partially) not by the breakdown Each state is characterized by quantum numbeaad N;. For states listed
of the polyad approximation but rather by the deficiency of in [15a] the normal mode assignment; f2v3] (second column) and the

the Taylor series representation of the initial Hamiltonian. £ — Eobsdifference (last column) are given.
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Note that similar factors cause the divergence of classical RETable 9
Hyperpolyad invariant for the potential [f\5a] expressed using initial nor-
mal mode coordinates

energies illustrated ifig. 3.
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Order Coefficient Term Coefficient Term
. . 0
5. Direct polyad assignment € 1 "
o . e x 1072 -4.53769 212323 -0.72735 212222
To_d_em_onstrate the validity and utility of our hyperpol_yad 183110 Gmars 1.02949 5
classification, we took quantum energy levels of ozone iden- 2 -
. . ) -0.42743 22 -2.15952 uz
tified in [15a,b] However, the normal (or local) mode identi- by 5
o o -2.15393 2123 0.79289 2273
fication of computed quantum levels often turns out difficult 017609 = 0.40596 5
and even prohibitive. As pointed to us by Tyutef22], one : le; : Zf;
of the authors of the direct quantum computation for ozone 0.85740 Z;is 1.45156 Zizg
[15a,b] assignment in terms of conventional normal-mode 0.37588 122 -1.26316 2z}
guantum numbers(, va, v3) becomes increasingly dubious 0.60643 3 -0.51476 1
starting withN = 4,..., 6 Ip this region, wavefun_ctlons bg— 12 4102 206150 Te1Tas 0.436622 TerTets
come heavy mixtures distributed over many basis functions. _ > 2
. . . . 0.829110 22222323 0.260237 2727
Often there is no clearly dominant function and sometimes 0.319093 > 0.817718 > 2
the leading contribution can be as low as 5%. Furthermore, : Yt : 3t
the node analysis often does not confirm the traditional “spec- -0.362839 Zfzfg“ -0.431633 Zi“fézz
troscopic” assignment. This all is further complicated by the 0.265834  z1u1% -0.073159 1217
problem of internal-to-normal coordinate conversion and by 0.062587 22273 -0.022140  z1z5z
the extreme sensitivity of some of the predicted states to -0.101320 75733 -0.178183  z1z%z
small variations of potential parameters and basis. It should 0.040851 237022 0.307898 237323
be pointed out, that similar difficulties are typical for other -0.207081 212223 -0.192657 217223
molecules. -0.188263 712273 -0.004925 371z
We saw that the polyad numbexsand N, of ozone re- 0.010098 Zeons 0504487 3z
mained vqlld at high excitations, while the |nd|V|d_uaI normal 0.001610 o 0.032320 4
mpde_: assignments{, va, v3) were no_longer applicable. In 0.049643 4 0.018965 &
principle,N (andN;) can be computedirectly from quantum pe 3
. . ! , . 0.198837 523 -0.052649 3z
wavefunctionsSince wavefunctions are defined on the origi- 0.011783 3 0.154100 2
nal configuration space, we should first expressterms of e o : 2
the original normal mode coordinatgsand conjugate mo- -0.061883 4% -0.033397 4%
mentap, seeAppendix A This gives a series 0.141450  zjz3 -0.028745 573
0.008507 2323 0.094462 2523
L7 =n+e L)1+ 3L ]+ -, (5) 0737032 222 -0.010975 7222

whose high order termsC[1n]; are given inTable 9 The
polyad numbem is the expectation valueC~1n) for the
quantum analogue a~1n.

In order to estimate the accuracy of the proposed method,
we checked how well the quantitg—1n in (5) (truncated

original system in the phase sp - This could be
done easily for the RE trajectories found $ection 3 At

the action pdg and 2L~ 1n along RE and studied their

where our Taylor series reproduced the potential particularly
poorly.

We should admit that in practice, the proposed assignment
method has a number of limitations. For example,£hén

Coordinatesy, z) are defined ilppendix A not self-conjugate monomials
enter with their complex conjugate.

produce well the original Hamiltonian. On the quantum side,
to some order) is conserved along the trajectories of the computing expectation values of high powers of momenta
p requires high order derivatives, which can be difficult to
evaluate numerically. We believe, however, that in the case

a given fixed value of action and energy, we Computed of ozone, using a few first orders 6f 1n should enable ad-

6. Discussion

vancing hyperpolyad assignments well beyond the today’s

difference. In most cases this difference remained small; limitindicated inFig. 5andTable 8
in some cases, however, it peaked at sharp turning points,

In general, due to their rotator analogy, the two-mode

guantity is obtained as a series in normal mode coordinatespolyads (such as the stretching polyads of ozone) are the only
(q, p)- Its extrapolation to high energies can be made diffi- polyads, whose dynamical description is relatively widely
cult not only due to the “legitimate” restrictions of the polyad implemented (see series of papers by Kellman and co-
approximation, but also because the Taylor series fails to re-workers, such a$12,23,14). Polyads formed by a larger
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number of modes are often introduced formally in relation to damental molecular system of current interest, and (ii) to
good quantum numbers (dfL3,24d,f), and very few stud-  make explicit the relationship between the polyad approxi-
ies attempted to analyze them dynamically. Relative equi- mation and RE. Far from trying to be didactic, we likestom-
libria of such systems are commonly treated as simple pe-plementhe significant body of the contemporary work on the
riodic orbits, though their relation to the polyad integral of vibrational analysis of triatomic and polyatomic molecules.
the normal form approximation and their role in understand- We strongly believe that only complete understanding of the
ing the internal structure of polyads is intuitively recognized hyperpolyad dynamics can enable further progress in this
[27]. field.

Arguably, the principal obstacle to the dynamical analy- Figs. 2 and Sllustrate the central role, which RE play
sis of polyads formed by a larger number of modes is the in shaping the hyperpolyad structure of the quantum energy
geometry of their reduced phase spaces. Thus, even thouglevel spectrum. This relation of RE to the existence of hyper-
theC P? polyad space of the 1:1:1 resonance system is suffi- polyads is further confirmed by the agreement of numerical
ciently simple[31,32,33a—dfor being used as widely as the action—energy dat&gction 3with the analytical expansions
“polyad sphere”, itis rarely mentioned in molecular literature for E(n) obtained in the hyperpolyad approximatidable 4.
on three mode systems. It is possible that some researcherin fact, the deviation of the two is almost invisible on the scale
avoid C P? because they underestimate the broadness of theof Fig. 2
1:1:1 resonance in an anharmonic system and favor more It is tempting to explain, why this works so well in the
elaborate resonance models, which reproduce more closelycase of ozone and to generalize, if possible, beyond this case.
the ratio of the harmonic frequencies of the molecule, e.g. The answer is, however, difficult to give quantitatively. The
5:3:5 in the case of ozone. We hope that our present work most important resonance in ozone is the 1:1 resonance of
would finally convince most of the skeptics of the versatility stretching modes. This resonance is included in the 1:1:1
of CP2. polyad model and is treated correctly. At the same time, the

It should be noted that resonances complicate the situa-bending-to-stretching frequency ratio of 3:5 is sufficiently
tion even further. Thus, in the simplest case of the two mode far from the Fermi resonance 1:2 and can be ignored at low
oscillator system with higher resonances, the reduced phasgolyad numbers. We can, therefore, argue that the plain
space is a topological sphere, which is, unlike the 1:1 polyad 1:1:1 hyperpolyad approximation applies in cases which are
space,not smooth It has been discussed comprehensively far from exact low-order resonances. Furthermore, the low-
in the mathematical literature in the example of the “clas- est 3:5 resonance term is of degree 8, while our present study
sic” two-mode Fermi system, or the 1:2 resonance; see Fig.is limited to degree 6 (ordef'). Indeed Fig. 3suggests that
4.1 of Appendix B.4 (Example 3) if84,36, p. 40] and the our normal form formulas diverge quickly whampproaches
semiclassical analysis ii835]. Regrettably, this mathemati- 8, ..., 10. At the same time, another, more obvious source
cal work has been as yet of little impact on the molecular of this divergence is the inefficiency of the Taylor series ap-
community, and the geometry of thwe;:m, polyad spaces  proximation of the potentigll5a], which goes bad at degrees
is still not clearly understoof37]. Geometry of the three  higher than 4.
mode polyad spaces in the case of higher resonances can It is indisputable and, in fact, widely accepted, that the
be very complex. Such spaces are known as weighted pro-RE-based analysis is a basic and very effective tool, which
jective spacef38]. Only in some cases, such as 1:2:2 used can be used in systems with many degrees of freedom. It
in [14] to model ozone, they can be describedCa® with will be interesting to study how it can be extended to rel-
singularities. The best known counterexample is the 1:1:2 ative periodic orbits Appendix A.5 and find applications
polyad space, whose geometry is very difficult to trivialize of such extension in real molecular systems. Another very
[39]. However, this geometry can be simplified due to an promising generalization is the analysis based on rotation—
additional Lie symmetry, such as the axial SO(2) symme- vibration relative equilibria [33d]. It will be equally inter-
try of linear triatomic molecules. The GO@nolecule and its  esting to study continuation of RE to high energies (cf.
mechanical analogues is the most recently revisited interest-{29]) in order to understand the breakdown of the polyad
ing example[40a—c] where singular reduction of both the approximation.

1:1:2 polyad symmetry and the SO(2) symmetry results in an

integrable approximation with two respective first integrals

n > 0 and—n < £ < n and the reduced phase space, which Acknowledgments
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(Section 4.3. uation of periodic orbits, and Dr. M. Joyeux for his com-
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Appendix A. Reduction of the 1:1:1 symmetry and
first normal form

Consider the vector fieldt,, of the 1:1:1 harmonic oscil-
lator with Hamiltonian

= 2@+ PP+ a5+ P35+ + pI). (A1)

In complex phase space coordinates

% = qk — 1 pr, w=qk+ipr, k=123,

the flow of X, is a rotation

n (21,22, 73, 1) > (€21, €122, €'23)

of the complex spacg® ~ Rp, .

We transform the initial phase spa€¥ into the phase
spaceC? of the normalized system using a near identity trans-
formationZ, which can be constructed as a Lie sef&ss-d]
The transformed Hamiltoniaf{, or the normal form is a
formal power series in variablesWWe expect that in the nor-
malized coordinatesthe Hamiltonian flowpy of our initial
system hag, as a component. In other words, all terms in
the serieg{ Poisson commute with, i.e., they are invariant
with respect to the oscillator symmetpy. We can, therefore,
reduce they, component.

After the near identity normalization transformatignis
constructed, we can find the inverge?® : C3 — C3 alsoin
the form of a Lie serief8a—d] On the transformed spa€#,
the integrah equals the quadratic form {\.1), and RE are
geometric circlesS'. The £~ transformation is necessary
to reconstruch and its orbits RE for the original system. In
particular,n becomes a serie& 1 in (z, z), see Eq(5) and
Table 9

A.1. Reduced phase space

Since g, acts freely onC3 (for all n > 0) reduction is
straightforward. We descend on the constant level set of
(which is a hypersphere of radiys= +/21) and identify all
points of this set which belong to the same circular orbit of
¢n. Hence a point on the reduced phase spBgewhich
we call thehyperpolyad spaceorresponds to all pointson
the transformed phase spat%whlch have the same module
|Z| = p and which differ only in total phase expilt follows
that for anyn > 0 the spaceP, is isomorphic to a complex
projective spac€ P2.

One possible etymology of the term hyperpolyad is that
the associated polyad integreih (A.1) and the polyad num-
bern in (1) are related directly to the hyperradigsn the
vibrational phase space of the system:

Z(p, +q7) =50
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Table A.1

Invariant polynomials of the 1:1:1 oscillator action used in the construction
and analysis of the hyperpolyad approximation for a molecule with three
vibrational modes

Expression Expression
n 1(z121 + 2272 + 2373) ng (2171 + z373)
ni laa X1 (2222 — 2323)
na 12022 X2 $(za73 — 2121)
n3 12323 x3 12171 — z222)

51 3 (2223 + 2322) f 3i(2223 — 2322)

52 1(za71 + 2123) t2 Li(zaz1 — 2123)

3 L(z1z2 + zo71) 13 Li(z122 — z271)

At the same time, such terminology helps to distinguish
hyperpolyads of ozone from the widely known stretching
polyads of this molecule, where one hyperpolyad contains a
family of “smaller” purely stretching polyads.

A.2. Invariant polynomials

Consider all polynomials ing( z) which are invariant with
respect to the flowp, of the vector fieldX, of the 1:1:1
oscillator. In other words, consider all polynomials i %)
which Poisson commute with. A direct calculation shows
that the total degrees inq, z2, z3) and €1, z, z3) of these
polynomials must equal. The multiplicative ring of al}-
invariant polynomials is generated by quadratic polynomials
of the formzz. Our particular choice of such generators is
presented imable A.1

A.3. Integrity basis

Any ¢, -invariant polynomial function, such as the normal
form#, can be expressed in terms of invariant$éatle A.1
Although these invariants are linearly independent, there is
a number of algebraic dependencies (or “sygyzies”) among
them. This means that the expressiog{ahay not be unique.
We say that the ring of alp,-invariant polynomials is not
generated freely.

Itis possible, however, to represéktuniquely using the
so-calledintegrity basiswhose particular realization is

R(n; x3, 51, 52, 53) X {1, n3, n3, 11, 12, 13). (A.2)

Here the ringR is freely generated by the so-callpdncipal
invariants {3, s1, s2, s3) andn. (These invariants enter in ar-
bitrary degrees.) All other invariants aexiliary and should
be used as factors of degree 1 or 0.

A.4. Reminder on the two mode case

For a lower dimensional example consider a similar pro-
cedure for the 1:1 oscillator. In this case, the polyad space is
the spaceC P! which is diffeomorphic to a 2-sphe&# [9].

This space is often called the polyad phase spH&te Gen-
erators (1, j2, j3) of the ring of invariant polynomials are
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angular momentum components defined in the way similar orbits of such system on the phase sp&g¢are defined by

to (3x3, 353, 3t3) and bound by the relation its dynamics (se@ppendix A.§, i.e., they are not group or-
bits. These periodic orbits lift to 2-tori iR, which should be
=2+ 5+ 5 calledrelative periodic orbits

where 2 is, of course, equivalent to the polyad integnal A.6. Dynamics of the reduced system
With no other symmetries (such as time reversal, etc) taken

into account this ring has the structure Equations of motion for the reduced system are written
using the Poisson algebfa formed by the eight invariant
R(j; j1, j2) x {1, js}. polynomials

In this paper, we work with two different realizations of the {x2, s1, s2, 53, 13, 11, f2, 13}.

above construction: thé-invariantS? subspace dof P2 and

the phase space of the second reduced problem in the approxthjs algebra is isomorphic to su(3). To find its structure con-
imation of the 1:1 stretching mode resonance. In the latter stants we use definitions Fable A.1, compute the Poisson
case, we use invariantsy sz, 12). brackets of the above generators in the initial variabies)(

. In quantum mechanics, an entlrely analogous construc- and re-express the results in terms of the integrity {As®).

tion of angular momentum operators in terms of two boson The integral of motiomis, of course, the Casimir 6. Once
operators was given by Schwindéf7]. However, while the  the structure constants are known, the eight equations of mo-
classical reduced rotational system is equivalent to the re-tjgn are computed as brackets of the reduced HamiltoHjan
duced 1:1 resonant oscillator system, thentization rule  (an element in the enveloping algebra) and the elements of
for the integra| of each system is different. In the latter sys-  p_an analysis of these equations is beyond the scope of our

tem,n =0,1,2,...and;j = 3n. paper which concentrates solely on relative equilibria. How-
ever, inSection 4.2ve consider the dynamics restricted to
A.5. Relative equilibria the Co-invariant subspacg? ¢ CP? and inSection 4.3ve

study the dynamics of the second reduced system. In both
In this work, we work with an integrable approximation cases we use an appropriate so(3) subalgelya of
to a Hamiltonian system with three degrees of freedom and
phase spac@ = R?q,p)- To build this approximation, we as-
sume that the original system has an approximate dynamicalAppendix B. Finite symmetries
Lie symmetryG1:1:1 = SO(2), whose action oR is given
by the flowg, of the system with Hamiltonian in (A.1). Since the three-atom permutations are prohibitive at the
The G1:1:1 action onP is free, and after its reduction, we  energies we consider, the total symmetry group of the vibra-
obtain the first reduced system with Hamiltoni&p on the tional Hamiltonian(2) is the Z» x Z» group of order four

phase spac®, = CPZ2. Each point ofP, with n > O repre-  which, is generated by the bond permutation
sents (lifts to) a circular orbﬂ% of G1:1:1,i.e., ofp,. Relative

equilibria (RE) of our system are special periodic orbitB,n
which coincide with the circular orbis}, and which map to
stationary points of{,, on P,.

We then consider yet another dynamical symmeétyy =
SO(2) associated with the flayy,, of the model 1:1 resonant
purely stretching Hamiltonian T (81, 52, o, m1, M2, pa) = (81, 62, &, =11, =12, — Pa),

C2 (Ela 527 a5 nla n27 pD() g (5/.:2, Ela a? 7727 nla p()l)a

and the momentum reversal

_ 1,2, 2, 2, 2 . .
ng = 5(q1+ p1+a5+ p3). (A.3) also known as time reversal. We describe below the conse-

Reducing second time, we arrive at the second reduced sysduences of the presence of this symmetry group.
tem with phase spacg, ,, = 2, , where 0< n, < n, and The generators of the groufy x Z act on the normal

n,ng? .
HamiltonianX,, ,,,. Now, for 0 < ny < n, we have RE, which mode variables as follows

lift to special dynamically invariant 2-tori if?. These tori
are group orbits of the total approximate dynamical symme-
try G = SO(2)x SO(2)= S?induced by the combined flow 7 : (¢1, 92. 93. p1, p2, p3) = (41, 92, 43, —p1, — P2, —P3).
@n © @n,. FOrng = n andn,; = 0, we haves! (= periodic or- o S
bit) RE. They correspond to the ones already found during Rewritten in terms of z), this action becomes
the first reduction.

Alternatively, the first reduced system can have no con-
tinuous symmetries and cannot be reduced further. PeriodicCs : (z1, z2, z3) — (z1, 22, —z3).

C> : (g1, 92, 93, p1, P2, p3) = (q1, 92, —q3, p1. P2, —P3),

T : (z1, 22, z3) — (21, 22, 23),
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Table B.1 B.2. Action on dynamical invariants
Invariant subspaces of the actionZf x Z and its subgroups on the phase

P2 . . . .
Spacé? _ _ Action of Z, x Z» on CP2 and resulting invariant sub-
Stabilizer Coordinate restrictions Topology  spaces ofC P2 can be most conveniently studied using the
CaxT V21(0,0,1) Point (z, z) definitions of the invariants iflable A.1 We find that
CoxT V/2n(sing, cosb, 0),6 =0, ..., 27 Circlest
T (z1,22,23), Imz1=Imz =Ilmz3=0 RP? T :(n,x,s,1) — (n,s,x,—1),
C2 (z1,22,0) CPl ~§2

Ca:(n,x,s3,13) > (n, x, 53, 13),
TheC P2 restrictions ore are implied. ( ) ( )

Cz @ (s1, 52, 11, 12) —> (—$1, —s2, —11, —12).

In particular it follows that {1, s», 71, 2) vanishon theC»-
invariant spheré&? e CP2. Moreover, the variables van-
The reduced system inherits the above finite symmetries. Tak-ishes on this sphere (séable B.J) and hence
ing them into account facilitates finding and analyzing rela- "

tive equilibria. 3=s1=s2=n=0=0 (B.1a)
Remaining invariantsg, s3, r3) are bound by the relation
B.1. Action on the reduced phase spé&te? X3+ 53415 =n? (B.1b)
Actions of different symmetry groups diP? were con- We can, therefore, represent tfig-invariant sphere embed-
sidered in[31] and later in[32]. Due to the presence of the ded in an ambient spad® with coordinatesxs, 3, 13). .
Z» x Z» action, the phase spa&P? is not homogeneous We can also account for above finite symmetry properties

and has several invariant subspaces which are characterize@f the dynamical invariantsi( x, s, 7) in order to improve the

in Table B.1andFig. B.1 In particular, we find one fixed point ~ integrity basis introduced iappendix A.3and thus make ex-
with coordinates = (0, 0, z3). Since the phase af is irrel- pressing thg normgl forr‘ﬂ even more eff|C|_ent. First, since
evant for the characterization of the point (0z3) on C P2, our systemiis invariant Wlth respect to the time reversal oper-
we use (00, v/2). We also note &> invariant 2-sphere (or atlonTwh|c.h chan_ges sign of auxiliary mvanants,({g, t3),_
CPY). This subspace is dynamically invariant because the We can see immediately thétbelongs to a smaller ring with
spatial symmetry’; is symplectic. It receives our special at- the structure

tention inSection 4.2We further remark that tHg-invariant

L . : . . 2
real projective spac® P2 and theCs-invariant spher&? in- R(n;x3, 51, 52, s3) % {1, n3, ng}.
tersect on a circl&, and that the fixed point (@, z3) lies
onRPZ. Furthermore, we can also account for fiesymmetry (see

Appendix B but at the cost of having a more sophisticated
integrity basis

R(n; x3, 53, 52, 53) x {1, n3, n3, s152, 135152, n35152}.

Appendix C. Stationary points of the first normal
form H,

We use the information on symmetry and topology of the
firstreduced systemin order to predict relative equilibria (RE)
as stationary points of the first normal fofiy . We then show
how to find their exact positions 6iiP? for a concreteH,,.

C.1. Prediction based on symmetry and topology

We assume thdakl,, is aZ» x Z, invariant Morse func-
tion on (CP,f whose number and type of stationary points is
allowed by the topology of P2 and the symmetry, x Zo.

Fig. B.1. Stratification of the reduced phase sp@@? due to the action of The action ofZ, x Z» on C P2 is detailed inAppendix B
Z> X Z», seeTable B.1 The 2-sphere and tHe P2 space are glued along This action has the isolated fixed point (Dm) (critical
the circle. Small circle dots show relative equilibria, symmetric stretch (ss), . . . .

orbit) whichmustbe the stationary point 6{,,. Furthermore,

bending (b), and asymmetric stretch (as); the fixed point (0, 0, 1) is marked . 5
black. ‘H, should obey Morse requirements 6P and for each
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invariant subspace ifiable B.1 In particular recall that the  we use the 2-sphere restricti{B.1) with r3 = 0, and recall
numbers;, of stationary points of Morse indé«of a Morse that at smalh, the value ofc3 equals approximatelyfor the

function?,, on P obey the Euler equality ss point and-n for the b point whiless is close to 0. Then
> > 2 4
(_1)kck = (—l)kbk, _ 153 153
X3 ==*n 1_5?_§ﬁ_'“ ]

whereby, are Betti numbers fdP. Consulting the Betti num- _ ' _ '
bersh; and the Euler characteristies= > (—1)*b; of the The formal series solution fag andxz is obtained by New-

subspaces listed below, ton’s iteration and is shown ifable 4

Space bo by by b3 ba o C.3. Stability of RE

CP? 1 0 1 0 1 3 Given the normal mode frequencies > w3 > wy of

R P? 1 0 0 1 ozone and the Morse requirements@?? and the subspaces
S? 1 0 1 2 involved, we can further infer that in the absence of any other
st 1 1 0 stationary points the signatures should be{— —) (Morse

index 4), ¢+ + — —) (index 2), and{ + + +) (index 0), re-

we conclude tha#s, should have at least three stationary spectively. The ss and b points remain stable when restricted

points onC P2, two onS2, and two ors?. onS?, where their signatures are () (maximum, index 2)
Note that, thé® P2 space has Euler characteristics 1. [This (++) (minimuzm, index 0), respectively. The Morse inzd_ex of

space is non-orientable, its first homology grdiigs Z» and ssand b o P* is also 0 and 2, while the as point &P is

H, is trivial, so that rank$; = b, = 0.]. A Morse function unstable with signature(+) and index 1. In general, Hamil-

onR P2 should have at least three stationary points. tonian stability of RE cannot be found from Morse indexes. It
All these requirements can be satisfied by the three pointsiS cléar, however, that ss and b remain stable (elliptic) as long

representing symmetric stretch (ss), asymmetric stretch (as) @S they correspond to the global maximum and minimum of

and bending (b) relative equilibria. The as RE is a fixed point, €N€rgy at givem. B _ o

while ss and b lie on the circle! = S2 N RP2 as shown in To check the stability of the as RE in the limit— O,

Fig. B.L All RE have time reversal symmetry; ss and b are We rewrite the lowest order of the first normal form (cf.

alsoCo-invariant. This minimal RE set is further confirmed Table A.J)

by the stability analysis. HO = 923488 + 208872v3 + 1634553

C.2. Position of stationary points ~ 1087 + 4511 — 3722,

as alocal linearized Hamiltoniast n1 + w,n2 near the fixed

Wh_en energies are close to 0 (near the equilibriusm0) point (as) withz = (0, 0, v/2n). We conclude that at very
andn is small the ss and b points correspond o the Sym- o,y the (as) RE is stable (elliptic) with one small positive
metric stretch and bending normal modes with coordinates frequencyw, and one large negative frequeney. To find
(v/2n, 0, 0)and (Q +/2n, 0), respectively. To fir21d the position  how o), andw), change withn, we can usez. z5) as local
of ss and b we write equations of motion @#< and restrict ;

. . . coordinates near= (0, 0, /2n), express
them to theC-invariant spheré&? (seeSection A.4. The ar=( ), exp

three equations remaining after such restriction are written in _ — =

terms of the so(3) algebra generated by, 3, 73). They re- 3 =23 = V21— 2121 — 2222,

semble Euler’s equations. We further restrict these equations ] ] ] _

to the T-invariant circleS® by settingss = 0. The Hamil- ~ and linearize higher order termd,(z1, z2, 21, z2) from

tonian#,, is T-invariant and does not depend en As a Table 3 The eigenvalues of the Hamiltonian matrix of this
result,x3 andss are multiples ofz and vanish. To solve the linearization are

st equaton A = —45° + 66897 + 47581n° — 14517° + - - -,
dr 2% = —372 + 1146551 — 19082 + 29.756:% + - - - .
E = {3, H,} = 41774503 + fn(xg, 53)62 +...=0,

It can be seen that, remains imaginary within the inter-
valn =0,..., 10 of the validity of our normal form, while
A1 becomes quickly real at ~ 1.50. This bifurcation cor-

. 2 2y responds to the normal-to-local mode transition described as
fn = 2.0902(5 — 53) — 3.794 53 + 2.6046c3s3 point A in Section 3.2seeFig. 1). It is further analyzed us-
+4.6048kc3n, ing the second normal form i8ection 4.3seeFig. 4) and

where
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Appendix D.3 The value of 1.50 agrees well with 1.24 ob-
tained inSection 3.2

Detailed analysis of the equations of motion®R? can
also provide Hamiltonian stability of the ss and b RE, as well
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defined by(D.1) in the ambient spack? with coordinates
(x2, s2, 12). The action of the finite symmetry grod» x Z»
on thisR3 space

as of the local mode RE. This, however, requires extensive C2 : (x2, 52, 12) — (x2, —s2, —12),

calculations because their coordinatest®? are not fixed.
Examples of such analysis can be found3ad,c,]

Appendix D. Second normal formH,, ,,,

T 1 (x2, 52, 12) = (x2, 52, —12),

can be easily found usingppendix B.2 It can be seen that
Z3 x Z acts onR® and on the spher&2 c R as a point

group of transformation§y, with its axisC» oriented as axis
x2. The action of this group 08,2” has two fixed points at

The first reduced system has two degrees of freedom. Wethe north and south poles, sEg. 4, left, which form two
can further normalize this system, if a second approximate one-point critical orbits. The reflection plangsandCz o T

integral of motiorm; = n1 + ngin (A.3) is introduced. This

new approximation reflects the fact that the ratio of frequen-

cies of the two stretching modes of ozangandws is very
close to 1:1 (seSection 4.3.

D.1. Invariants and integrity basis

Like in the case of the hyperpolyad integnalve consider
the new dynamical symmetry induced by the flow

¢n, 1 (21,22, 23, 1) = (€21, 22, €'23)

of the system with Hamiltonian;. This flow is a rotation

in C3. We normalize the first normal forr#,, with regard

to this symmetry and obtain the second normal @i,
whose terms Poisson commute whitbth nandn,. This fur-
ther restricts the set of generator3able A.1to those, whose
monomials have the same degree in, ¢3) and €1, z3).
When selecting invariants, we should, of course, picad

ns. Then we are left with three linearly independent invariants
x2, s2, andr, which are bound by the algebraic relation

x5+ 55415 = n? (D.1)

s°

interseciSﬁS on two circles, each circle minus two critical
orbits forms a one-dimensional stratum.

D.3. Dynamics and stationary points

A Morse function#,, ,, on S? should have at least two
stationary points, amaximum and a minimum. In our case, the
two fixed points of theZ, x Z, symmetry group action are
necessarily the stationary points#f, ,,,. Their coordinates
are
X2 = *ny, s2 =12 =0.

Whenn; = n (i.e., § = 0), these points correspond to the
symmetric ss X2 = —ng) and asymmetric asxf = ny)
stretch RE. This can be verified directly using the expres-
sion for #H, ,, at these points given ifiable 6 In the limit

ns = 0 (i.e.,6 = n) both points correspond to the bending RE
b.

The concrete functiorH, ,, may, of course, have more
stationary points. The latter can lie either on one-dimensional
strata or on the generic stratum. If such points bifurcate from
ss or b, they, typically, should depart on a one-dimensional

It can be shown that these invariants generate the ring of allStratum (circles ifig. 4, left). To find new stationary points,

¢n andg,,_ invariant polynomials with the structure
R(n, ng; x2, s2) x {1, t2}.

Furthermore, since the second reduced Hamilto®dan, is
Z2 x Zp-invariant, it belongs to a smaller ring

R(n, ng; x2, 53),

cf. Appendix B.2 This ring is freely generated by andsg.

In other words#, ,, can be considered as a function of two
variables £, s2) and, of course, parameters ;).

D.2. Reduced phase space and its stratification

Relation(D.1) proves that (for any:; > 0) the reduced

phase space of the second reduced system is yet another 3t

sphereS,zzS (often called polyad spheif@2]), which can be

we should consider equations of motion fog,(s2, 2). The
Poisson algebra generated by invariartsy( 3s2, 312) is a
standard so(3) algebra with Casimiy. Since#H,, ,, is T-
invariant, it does not depend e so thatx ands, vanish
whenr, = 0. Therefore, all time reversal invariant stationary
solutions (withr, = 0, i.e., onthe&l stratum) other than those
at the fixed points (with, = 0) satisfy the equation

{r2, Hn,ns}sgl = CZXE + bxy + ¢ =0,

and, of course,

FromTable 5we obtain

—0.4183%%,
b = 40.775° + (2.3785% — 1.0233%,)c?,
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Fig. D.1. Left: fragment of the diagram Fig. 2with the elementary cell of

the local quantization iSection 3.3dashed line) and the polyad quantization

in Section 3.4solid line and shaded area). Filled circles show quantum states
with N = 3, 4, and 5; opaque circles mark classical RE limits; thick solid line

at the minimum energy corresponds to the bending RE. Right: corresponding

cycle bases on the EBK torus.

¢ = —45417+ (2.13081, — 8.05941)¢?
+(0.3948%n; — 0.205491% + 0.20054:2)€*,

(Note thate is a placeholder for the formal smallness pa-

rameter and should be set to 1.) Solving these equations we

confirm that at very low values ofandn, the second normal
form H, ,, is the simplest Morse function & with only
two stationary points, a maximum &t = —n; and a min-
imum atx, = ny. Additional pair of equivalent solutions is
characterized ifable 7 This pair appears whembecomes
larger than

nerit = 1.24438+ 1.1341% — 0.35633x 107262 4 - - -,

wheren > § = n — ny; > 0. (Notice the excellent agreement
with the value ofn; for the A point in Section 3.2 The

two new RE are, of course, the local modes. The normal-to-
local mode bifurcation at = ngj; is a textbook example of

a bifurcation with broken symmett¥, (which in our case is
realized a<", o 7 or C2); itis also often called a “pitchfork”
bifurcation. As: > ngjt increases the two points move along
theT-invariant circle where, = 0. TheC, symmetry makes
these points equivalent; they are absolute minim&igf,,
(seeFig. 4, right).

Appendix E. On the choice of local action-angle
coordinates in different EBK quantization schemes

In Sections3.3 3.4, 4.4, and 4.5 we used different
Einstein—Brillouin—Keller (EBK) quantization schemesin or-

der to describe all or part of the quantum states of our system

Recall that EBK quantization uses local action-angle coordi-
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quently, exciting transversal modes with quantum numbers

(n’, n”) changes the hyperpolyad numlreiThe cycle basis

for the same torus in the polyad schemeSafction 3.4is

(o, ¥ —yo0, v"—v0). As a consequence, local quantum num-

bers in the two schemes differ as illustratedrig. D.1
Quantizing the stretching polyad actiepin Section 4.4

has some similarity with that for the bending RE in

Section 3.3cf. Figs. D.1 and 5The difference now is that

o’ and o” are assumed to be in 1:1 resonance and there-

fore, n’ andn” cannot be used as independent conserved

guantities. We use the “small polyad” numbgr=n" + n”

instead.
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