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Abstract

We demonstrate how relative equilibria of a vibrating molecule, which are families of principal periodic orbits otherwise known as nonlinear
normal modes, can be used to describe the global polyad structure of vibrational energy levels. The classical action integraln(E) computed
along these orbits at different energiesE corresponds to the polyad quantum numbern so that the energyE(n) of different relative equilibria
describes the splitting ofn-polyads. Further information on the internal polyad structure can be driven from the stability analysis of relative
e ell-
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quilibria. We use the ozone molecule as a concrete example wheren-polyads or “hyperpolyads” should be distinguished from the w
nown polyads of the 1:1 stretching mode resonance; the stretching polyads are structural elements of hyperpolyads. We give
nterpretation of the relation between relative equilibria andn-polyads based on the normal form reduction in the limit of small vibra
ear the equilibrium.
2004 Elsevier B.V. All rights reserved.
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. Introduction

In this article we intend to describe the global polyad struc-
ure of the vibrational levels of ozone. We consider the classi-
al mechanical analogue of the vibrational molecular system
nd use the results of the qualitative analysis of this classical
nalogue in order to characterize the polyad structure of the
riginal quantum system. After specifying the dynamical or
olyad symmetry of our system, we find its relative equilibria
RE), which provide the framework of the qualitative study.
Definition of relative equilibrium. Consider a Hamilto-

ian dynamical system with phase spaceP and Lie symme-
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try groupG. Let gt ⊆ G (with parametert ∈ R) be a one
parameter continuous subgroup ofG. A phase curve of ou
system which coincides with thegroup orbitof the action o
gt onP is called relative equilibrium (RE), see Appendix
of [1a] and Chapter 3.3 of [1b]. Reduction of the symme
groupgt maps such phase curves to equilibria of the red
system.

We describe the RE of ozone first as “short” periodic or
and use their action-energy diagram to describe the po
structure. Subsequently, we normalize the classical sy
and uncover the explicit relation of RE to the polyad inte
of the normal form. Finally, we quantize the normal form
compare the results to the ab initio energy levels.

1.1. Rotational relative equilibria

The most obvious molecular example of RE comes u
the study of free molecule rotation. In this case, since

386-1425/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
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system is invariant with regard to rotations of the laboratory
fixed frame,G = SO(3),gt = SO(2), and RE correspond to
rotation aboutstationary axes[1a,2]. Due to additional fi-
nite symmetries, the molecule has usually several equivalent
stationary axes. Molecular spectroscopists have recognized
long ago that such axes manifest themselves in the quantum
spectrum aslevel clusters[3]. Applications[4,5] normally
study the reduced system, for which stationary axes of rota-
tion become equilibria. For each non-zero value of the length
j of the total angular momentum, the reduced phase space is
a 2-sphereS2

j . The reduced Hamiltonian is a function on this
space. It is often calledrotational energy surface[6] and is
depicted as a deformed sphere whose maxima, minima, or
saddle points represent RE.

1.2. Vibrational relative equilibria

We can extend our definition of RE by allowing that the
symmetryG is not necessarily strict, but is an approximate
dynamical symmetry. This extension is particularly useful in
the study of molecular vibrations.

1.2.1. Resonances
The molecular vibrational Hamiltonian in the case of small

vibrations about a well-defined molecular equilibrium (the
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equations of motion for the system with Hamiltoniann that
ϕt acts as a rotation on the phase spaceR2K

q,p.

1.2.2. Reduction of dynamical symmetry
In general, the Poisson bracket{H (s), n} does not van-

ish unlesss = 0. We assume, however, that the higher or-
dersH (s) areapproximately G-invariant. More precisely, as-
suming that{H (s), n} for s > 0 are small, we cannormal-
ize H so that all termsH(s) in the transformed Hamilto-
nianH Poisson commute withn. The normal formH is,
therefore, strictlyG-invariant. The canonical transformation
Lε : H → H is a near unity transformation which becomes
identity whenε → 0 [7]; in particular,H(0) = H (0). Like the
original HamiltonianH, the normal formH is anε-series.
The most practical and direct method of normalizing such
series is the Lie series method[8a–d]. In most cases with
K > 1, the seriesH diverges when taken to unreasonably
high orders (see, for example, Appendix 7 of[1a]). Con-
sequently, we have to truncateH and specify conditions at
which such truncated normal form is useful. Normally we
restrict the energyH, the value ofn, and/or the perturbation
scaleε.

By construction, the Hamiltonian functionn is an integral
of motion of the normalized system. We can, therefore, reduce
this system at each given value ofn > 0, so that the value of
n becomes a parameter. Thereduced HamiltonianH is the
n hase
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ase of “rigid” molecules) is a power series

= H (0) + εH (1) + ε2H (2) + · · ·

n displacementsqk and conjugate momentapk, whose term
an be distinguished by the uniform smallness parameε.
he quadratic part ofH is

(0) = 1

2

K∑
k=1

ωk(q
2
k + p2

k) =
K∑
k=1

ωknk,

hereK is the number of vibrational degrees of freed
nd frequenciesω1 : ω2 : · · · : ωK obey, approximately o
xactly, theresonance conditionm1 : m2 : · · · : mK, where
k are positive integers. (Note that herenk are classical ac

ions which quantize asnk → Nk + 1
2, whereNk = 0,1,2,

tc.) The resonance condition definesG. For example, con
ition 1:1:· · · :1 results inG = SU(K). The subgroupgt is
iven by the flowϕt of the vector fieldXn of the Hamiltonian

= 1

2

K∑
k=1

mk(q
2
k + p2

k).

omparingH (0) andn, we note that frequenciesωk in the
inearized HamiltonianH (0) are approximated inn by inte-
ersmk. Furthermore, it is often convenient to rescale en
o, thatH (0)ω−1 ≈ n, whereω is the mean characteristic v
rational frequency of the molecule. We also find from
n

ormal formH expressed as a function on the reduced p
pacePn.

In the case of the resonance condition 1:1:· · · :1, the re
uced phase space is the complex projective spaceCPK−1.
ynamical variables of the reduced system are quad
olynomials in (q, p) which Poisson commute withn and
enerate a Poisson algebra su(K). In this paper we will en
ounter spacesCP2 andCP1.

The reduced phase space of the two-mode system (K = 2)
ith resonance 1:1 is a 2-sphereS2 which is isomorphic to
P1 [9]. This basic case has, of course, been studied in
etail, notably in application to the H́enon–Heiles syste

10] and its molecular analogues[11], and 1:1 resonant v
rational subsystems of polyatomic molecules[12]. Since the
educed system is equivalent to the reduced rotational sy
seeAppendix A.4), we use the analysis described briefl
ection 1.1.

.2.3. Polyads and polyad Hamiltonians
The termpolyad quantum numberis now widely used in

olecular spectroscopy to label a relatively isolated ag
ation of vibrational states[13]. For example, two stretchin
odes of an AB2 molecule often have nearly the same
uenciesω1 andω3 and can, therefore, be considered a
:1 system mentioned above. A stretching polyad of
olecule is labeled byns = n1 + n3, wheren1 andn3 are
umbers of quanta in each of the stretching modes.
olyad number can be extended to include the bending v

ion as well. Frequently, there is a near 1:2 resonance be
tretching and bending modes. Then the polyad numbe
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be defined as

N1:1
2 :1 = n1 + 1

2n2 + n3.

Such number is often used for triatomic molecules[14]. If
the normal mode frequencies of AB2 can be approximated
by integersk1:k2:k3, we can use the polyad number

Nk1:k2:k3 = k1n1 + k2n2 + k3n3.

According to this general definition, the numberN2:1:2should
be used instead of the aboveN1:1

2 :1.

In this work, we will use the polyad number (cf.
Appendix A.1)

n = N1:1:1 = n1 + n2 + n3, (1)

which we call thehyperpolyad number. We propose to clas-
sify quantum states first usingn and then, if possible, other
quantum numbers. This principle works very well in the
ozone molecule where all known assigned vibrational lev-
els [15a,b]2 can be easily and unambiguously grouped into
n-polyads, even though the resonance condition for ozone is
much closer to 5:3:5 or 2:1:2 than to plain 1:1:1.

Polyad Hamiltoniansare used in spectroscopy to describe
internal structure of polyads. These spectroscopic Hamiltoni-
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1.2.4. Modes and periodic orbits
The spectroscopic concept of “mode” is often confusingly

vague. The common practice of opposing “local” and “nor-
mal” modes can be a good example. The concept of RE helps
to bring the situation in better order.

Consider the standard bound molecular system of small vi-
brations described in terms of small displacementsqand cor-
responding conjugate momentap. The zero-order vibrational
Hamiltonian is a sum of two positively definite quadratic
forms, the kinetic energyT and potentialV. The phase space
variables (q, p) can be chosen so that bothT(p) andV(q) are
diagonal. Such variables correspond tonormal modes[18].
The presence of symmetry often simplifies the task of diag-
onalization. Thus ozone and molecules AB2 have only one
asymmetric displacementq3 which defines the normal mode
ν3 unambiguously. The form of the two symmetric modesν1
andν2 depends on the particularT(p) andV(q).

The dynamical concept of mode begins with the theorem
of Weinstein[19]. Consider a stable equilibrium of a Hamil-
tonian system withK degrees of freedom, and suppose that
harmonic frequencies are incommensurate, i.e., there are no
resonances. Then near the limit of linearization, i.e., at ener-
gieshclose to the equilibrium energyh0, the system has a set
ofKenergy-dependent families of periodic trajectories which
are defined by the nonlinear terms of the local Hamiltonian.
These families are basic vibrational modes of the system near
t
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ns are calledeffectiveandmodelto emphasize the absen
f explicit inter-polyad interaction terms and the liberty

he choice of resonance condition, respectively. Param
f the polyad Hamiltonian are often treated as phenom

ogical spectroscopic constants, whose values are obtain
tting experimental data. To further confuse the uninitia
ypical resonance conditions (=models) and related po
amiltonians are traditionally named after Fermi, Darli
ennyson, and others[16]. The simplest example is aga

he 1:1 Hamiltonian, which is analogous to an effective r
ional Hamiltonian. (Recall that the “rotational polyad” i
ultiplet of levels with the same angular momentum qu

um numberJ, seeAppendix A.4and[17].)
Going back toSection 1.2.2we can see that (i) thepolyad

pproximationamounts to the dynamical symmetry assu
ion given by the resonance condition and followed by
uction, (ii) polyad Hamiltonians are nothing but redu
amiltoniansHn, (iii) vibrational dynamics of the reduce
ystem defines internal polyad structure. Spectroscopist
truct quantum polyad HamiltonianŝHn using terms whic
reserve the polyad number. In order to commute with q

um operator ˆn, terms inĤn are restricted to have creatio
nnihilation operators of certain degree and type. This is
gous to the classical construction of the ring of the dyn

cal invariants (seeAppendix A.2).

2 The work[15b] gives essentially almost the same potential as in[15a].
he latter was obtained using MORBID, which made a few approx

ions in the kinetic energy operator. These were “absorbed” in the pote
he new paper removed this deficiency using the “Exact Kinetic Ene
perator.
he given equilibrium. To distinguish them from theK normal
odes defined above, it was suggested to use the termnon-

inear normal modes[20a–c]. We realize immediately th
n fact, these modes are nothing but vibrational RE.

In a resonant system, the number of nonlinear no
odes (=RE) can be a priori greater than the num
f normal modes (coordinates) [20a–c]. Again, the p
nce of symmetry can greatly simplify the task of ch
cterizing these RE. Thus recall the textbook examp

heeightRE of the two-dimensional H́enon–Heiles syste
10,20a–c], a nonlinear 1:1 resonant oscillator with symm
ry D3, and its molecular analogue—theH+

3 molecular ion
11].

As the energyh gets further fromh0, nonlinear norma
odes (=RE) can bifurcate, and in particular, their num

an increase. These bifurcations correspond to bifurca
f the equilibria of the reduced system. The new (families
eriodic trajectories are, therefore, also RE. Different
f RE correspond to qualitatively different internal poly
tructures. The classic example of an RE-bifurcation is
o-called normal-to-local mode transition, which happen
zone whenh is very close toh0. We will discuss this bifur
ation in detail.

At very low energies, the ozone molecule has three
inear normal modes which correlate with the three nor

odes, symmetric and antisymmetric stretchingν1 andν3,
nd bendingν2. At slightly higher energies, it also has two

ra equivalent RE, which spectroscopists call “bond len
odes orlocal modes[21]. These modes are close to

ibration of the individual OO bonds.
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Like any stable periodic trajectories, stable RE of period
TRE(n) can undergo period-sbifurcations which involve tra-
jectories of periodsTRE(n). Within the framework of the
polyad approximation, we can only describe period-1 bifur-
cations. Such bifurcations affect the internal structure of the
hyperpolyad but not its validity. Cascading higher-period bi-
furcations signal the destruction of hyperpolyads and the on-
set of chaos. However, when suggesting the limits of the hy-
perpolyad approximation for the classical system, we should
also consider that the quantum analogue system is, gener-
ally, more robust to chaos, and our approximation has a good
chance to stretch further than we would expect classically.

1.2.5. Assignment of quantum states
Classical textbooks on molecular vibrations and spec-

troscopy[16,18] usually suggest normal modes for vibra-
tional energy level assignment. More recently, the local
modes of a number of hydrogen-bonded molecules and ozone
were suggested as more “physical”[21]. On the other hand,
both nomenclatures can be considered formally equivalent in
the limit of small distortions where local and normal modes
are linear combinations of each other and there is linear rela-
tionship between the corresponding quantum numbers. The
current spectroscopic practice is to present both local and nor-
mal mode quantum numbers and specify their relationship.

Dynamical approach to assigning quantum states is based
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relation of these orbits to relative equilibria. We normalize
the initial three-mode Hamiltonian of[15a] and analyze RE
as equilibria of the reduced system (Section 4). Finally we
compute quantum levels in two ways, using local lineariza-
tion near stable periodic orbits (Section 3.3) and by quantiza-
tion of the global normal form (Section 4.5). We reproduce
adequately all quantum levels assigned in[15a–c]and thus
demonstrate the validity of the polyad approximation. Sub-
sequently, we address the main problem faced in[15a,b,22],
namely the assignment of quantum levels computed numer-
ically. We suggest a direct method of computing the hyper-
polyad number for a given wavefunction (Section 5).

This work should, of course, be regarded in the context of
numerous publications on the vibrational levels and dynamics
of triatomic and polyatomic molecules[23,24a–f], including
more recent work on ozone[15a–c,25,26]. In particular, we
like to mention the work by Lu and Kellman[14], who study
ozone on the basis of a 2:1:2 model polyad Hamiltonian.
They focus mainly on stretching polyads (cf.Section 4.3) and
apply the standard analysis based on the angular momentum
analogy[6,12,5].

Contrary to[14], we derive our polyad approximation
from the full vibrational Hamiltonian, which describes all ex-
perimentally known states of ozone. The same computation
was independently attempted by Joyeux[27], who obtained
even better reproduction of the numerical quantum energies
o
c sider
o basic
q ted
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s
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+ ξ1

η1 +
n localization near RE or, in general, other dynamic
nvariant subspaces. Consider a sufficiently stable rel
quilibriumΠ, such as the local mode RE of ozone. Ta
rojectionΠq of the periodic orbitΠ in the original phas
paceR2K

(q,p) on the configuration spaceRKq . When a quantum
avefunction is localized nearΠq, its nodes followΠq. In the

imiting case the number of such nodesNΠ equals the polya
uantum numberN. WhenNΠ is less thanN, other degree
f freedom are involved in the direction transversal toΠ. Yet,

f NΠ is sufficiently close toN, the node pattern can still r
ain a regular lattice which followsΠ. For such statesNΠ is

learly a good quantum number. Of course, not all state
nto such category. Other states can, possibly, be assig
erms of other stable RE, and some strongly delocalized s
ould remain without any meaningful dynamical assignm
xceptfor the hyperpolyad numberN. Thus,our main propo
ition is to begin with the hyperpolyad assignment of
tates, and then classify them further where it is possib

.3. Outline

The paper has three main directions. In order to unc
he existence of hyperpolyads, we first study numerically
ection 3) the main periodic orbits of the vibrational sy

em of ozone with Hamiltonian in[15a,b]. We then show th

T = η2
1 + η2

2 + (1 + ξ1)2 + (1 + ξ2

(1

− sin(αe + α)

(1 + ξ1)(1 + ξ2)
pα{(1 + ξ1)
f [15a,b]. However, far from trying to compete with[15a–
] in accuracy of reproduced quantum energies, we con
ur classical study and the subsequent quantization as a
ualitative tool of dynamical characterization of compu
tates. We like to focus mostly on the global hyperpo
tructure and on the problem of level assignment.

. Ozone molecule

The most abundant isotopomer of ozone molecule
hree identical atoms and isosceles equilibrium configur
ith two equal bond lengthsr12 = r23 = re and the bon
ngleαe. Vibrations of this molecule are described most
rally in terms of two dimensionless bond length displa
entsξ1 andξ2, such that

12 = re(1 + ξ1), r23 = re(1 + ξ2),

nd the bond angle displacementα. In these coordinates, t
inetic energy termT in the Hamiltonian

= 1

mr2
e

T (ξ, η, α, pα) + V (ξ1, α, ξ2) (2a)

as the form

1 + ξ1)(1 + ξ2) cos(αe + α)

)2(1 + ξ2)2
p2
α + cos(αe + α)η1η2

(1 + ξ2)η2}, (2b)
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whereη1, η2, andpα are momenta conjugate toξ1, ξ2, and
α, respectively. The potential functionV (ξ1, α, ξ2) was de-
termined very accurately in the recent work by Tyuterev et
al. [15a] from fitting all known experimental data. This po-
tential has good global properties and the dissociation en-
ergy of 9450 cm−1 which is in good agreement with experi-
ment. An improvement of this potential was reported later in
[15b].

The Hamiltonian(2) is invariant with respect to bond per-
mutationC2 and time reversalT . These two finite symme-
try operations generate a group of order four with structure
Z2 × Z2. Appendix B gives a detailed description of this
group and of its implications.

For the normalization purposes we represent the Hamil-
tonian(2) as a power seriesH(q, p) in the near equilibrium
normal mode displacementsq = (q1, q2, q3) and conjugate
momentap = (p1, p2, p3)

H = ω1

2
(p2

1 + q2
1) + ω2

2
(p2

2 + q2
2) + ω3

2
(p2

3 + q2
3)

+εH1 + ε2H2 + ε3H3 + · · · .
The totally symmetric coordinatesq1 and q2 depend on
ξ1 + ξ2 andα; the symmetric stretchq1 has a predominant
contribution due toξ1 + ξ2 while the bending coordinateq2
depends mostly onα. The anti-symmetric stretch coordinate
q e
s rm.
N a-
t f
t
d are
l

3

or-
b ol-
l ily
i eed,
a
p d
W ba-
s with
L r-
c bi-
f :1:1
m

3

has
b and
F
W age

Table 1
Hamiltonian of ozone with vibrational potential of Ref.[15a] expressed
using normal mode coordinates

Order Coefficient Term Coefficient Term

ε0 1132.3600 1
2(q2

1 + p2
1) Symmetric stretch

714.6150 1
2(q2

2 + p2
2) Bending

1086.9425 1
2(q2

3 + p2
3) Asymmetric stretch

ε1 −40.26499 q3
1 −10.30595 q1p

2
3

29.41346 q3
2 20.49931 q2p

2
1

−8.49418 q1q
2
2 −5.25573 q2p

2
2

−195.22643 q1q
2
3 −13.48096 q2p

2
3

8.92844 q2
1q2 −41.43463 q1p1p2

65.82223 q2q
2
3 −11.77458 q2p1p2

6.36668 q1p
2
1 13.26030 q3p2p3

−24.45093 q1p
2
2 4.98473 q3p1p3

ε2 0.23935 q4
1 0.16508 q2

1p
2
1

2.21248 q4
2 −0.03366 q2

2p
2
1

4.36140 q4
3 0.39659 q2

2p
2
2

−4.01685 q3
1q2 −0.35362 q1q2p

2
3

−1.56543 q1q
3
2 −2.29488 q1q2p1p2

−0.77267 q2
1q

2
2 −0.15429 q1q3p1p3

12.92855 q2
1q

2
3 −1.04417 q2

2p1p2

−13.31552 q1q2q
2
3 1.58181 q2

3p1p2

−0.26197 q2
2q

2
3 0.94469 q1q2p

2
2

1.19930 q2
3p

2
2 −0.36182 q1q2p

2
1

1.80520 q2
1p

2
2 0.47273 q2

1p1p2

−0.13517 q2
1p

2
3 0.27819 q2q3p1p3

−0.23128 q2
2p

2
3 0.74005 q2q3p2p3

0.42515 q2
3p

2
1 −0.41046 q1q3p2p3

CONTENT[30],3 which can be easily adapted for our pur-
poses by introducing a free dummy parameterλ in the equa-
tions of motion

q̇i = ∂H

∂pi
, ṗi = −∂H

∂qi
+ λpi, i = 1,2,3.

We normally start from a normal mode and continue the pe-
riodic orbit by allowing the period to change and calculating
the energy and action. The parameterλ is also varied but
maintained around zero. In this way one is able to produce
a graph of the energy against the action for every periodic
orbit, seeFig. 1.

3.2. Bifurcation of periodic orbits

At very low energies, the three periodic orbits (POs) corre-
late with the three normal modes, seeFig. 1; the bending PO
has the minimum energy at given fixed actionn, the symmet-
ric stretch PO stays on top, and the asymmetric stretch PO

3 This package is based on the other versatile continuation package AUTO
and provides extremely flexible and powerful graphic interface.
3 is proportional to (ξ1 − ξ2). The zero order term in th
eriesH(q, p) is in the standard diagonal quadratic fo
ote, that unlike in some other AB2 molecules, such as w

er, the symmetric stretch frequencyω1 is larger than that o
he asymmetric stretch. In this study we expandedH(q, p) to
egree 6 (orderε4); cubic and quartic terms in this series

isted inTable 1.

. Relative equilibria as principal periodic orbits

We begin with direct numerical study of periodic
its which correspond to relative equilibria (RE). As f

ows from Section 1.2, we should be interested primar
n the energy–action characteristics of these orbits. Ind
ction corresponds to classical polyad numbern and the
olyad structure is given by the RE energies at fixen.
e argue that our periodic orbit analysis justifies the

is for using the 1:1:1 resonance model. This agrees
u and Kellman[14], who did not find low energy bifu
ations in their 2:1:2 model except for the local mode
urcation, which can be equally well described by the 1
odel.

.1. Energy–action characteristics

Continuation of periodic orbits of molecular systems
een done by a number of authors, notably Prosmiti
arantos[28]. We do it in a somewhat different context[29].
e opted for the very well-developed continuation pack
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Fig. 1. Action–energy diagram for principal periodic orbits (PO) of ozone.
Bold and fine lines indicate stable and unstable PO, respectively; circles
denote bifurcations; dotted line shows the average polyad energyE0(n),
which is subtracted in subsequent figures.

lies slightly below it. The first bifurcation, which happens
in ozone, is the well-known bifurcation of the asymmetric
stretch PO resulting in normal-to-local mode transition[14].
This bifurcation is indicated by point A inFig. 1with energy
E = 1336 cm−1 and actionn = 1.24, which is even below the
ground state energy of 1451 cm−1. The asymmetric stretch
PO loses stability and the two stable equivalent local-mode
PO branch out. The bifurcation breaks the bond permutation
symmetryC2. The two local-mode PO remain symmetric
with regard to the time reversal symmetryT but are mapped
into each other byC2. Continuation of the unstable PO and
the two new POs is shown inFig. 1by a fine line and a single
bold line, respectively. As the actionn increases further, the
energy separation between the unstable asymmetric stretch
PO and the local-mode POs increases, stability of the two
local-mode POs grows and quantum localization near them
becomes possible. Since these POs are equivalent due to th
C2 symmetry of the system, the localized quantum states form
doublets which are readily observed experimentally.

Next, there are two pairs of period doubling bifurcations.
Point B corresponds to the sequence of two bifurcations of
the bending PO, while point C marks the two bifurcations of
the local-mode PO. In these bifurcations, each PO becomes
briefly unstable thus bringing in some irregularity in the dy-
namics. It is hard to judge from the limited analysis given
here about the full impact of these bifurcations. It seems that
t will
b .

w oint
D k
b the
p f the

local modes, the child branches stay so close to the parent that
they can be hardly distinguished inFig. 1. Another difference
is that this bifurcation breaks theT symmetry and notC2.
The two new PO remain symmetric with regard toC2 but are
mapped into each other byT .

Comparing these results to a computation with a more re-
cent potential[15b], shows that the system of POs remains
essentially unchanged (see below, energyE in cm−1 and ac-
tion n).

Point Ref.[15a] Ref. [15b]

A 1336 1.24 1361 1.27
B 898 1.26 872 1.22

973 1.36 944 1.32
C 7454 7.83 7396 7.78

7774 8.23 7564 7.99
D 10957 10.04 7893 7.20

Nevertheless, we can see that the energy of point D varies
largely even for a slightly different potential[15b]. Such sen-
sitivity may point to compromised global high-energy proper-
ties of potentials[15a,b], and makes continuation into higher
energy–action values questionable.

To summarize, we detected a number of bifurcations of
“ m-
a are
o pro-
n h in
e s and
t ma-
t fi-
c r
a

3

(PO)
c our
H mal-
i n is
n ound
s lized
s

i mes
a ch as
C trix
a e,
fi tions
t e
r exes
+

ht-
f

hey are unimportant to the global polyad structure. This
e further justified by the comparison to quantum levels

Analyzing the energy–action diagram inFig. 1 further,
e observe a bifurcation of the symmetric stretch PO (p
) at E = 10 857 cm−1 andn = 10.04. This is a pitchfor
ifurcation which produces two new equivalent POs while
arent PO loses stability. However, unlike in the case o
e

basic” periodic orbits of ozone, which can potentially da
ge the polyad approximation. However, most of them
f very local character (B and C) and are unlikely to be
ounced in the quantum spectrum, or happen very hig
nergy. The general conclusion is that the onset of chao

he breakdown of our global 1:1:1 hyperpolyad approxi
ion should happen forn > 10; classical dynamics is suf
iently regular (most of the tori are still present) at lowen
nd corresponding energies.

.3. Local quantization near stable RE

Quantum states localized near a stable periodic orbit
an be characterized using a local approximation of
amiltonian near the orbit. We can do this even when nor

zation is impossible, i.e., when the polyad approximatio
o longer valid. In the simplest case, we consider the gr
tate of the harmonic approximation, i.e., the most loca
tate described inSection 1.2.5.

Computing harmonic frequencies (ω′, ω′′) of oscillations
n other degrees of freedom about the “central” PO co
t no additional cost because continuation programs, su
ONTENT, return the eigenvalues of the monodromy ma
nd the stability indexes (s′, s′′) of the PO. We can, therefor
nd the estimates of harmonic frequencies in the direc
ransversal to the PO. Note that (ω′, ω′′) for a stable PO ar
eal numbers whose signs are given by the stability ind
1 or−1.
Quantization in this harmonic approximation is straig

orward. The action integral along the PO equalsn0 + µ,
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Table 2
EnergiesERE in cm−1 of purely bending quantum states (0, v2,0) of ozone
computed using the harmonic approximation near the bending RE

v2 ERE ∆ v2 ERE ∆

1 701 0 6 4164
2 1399 0 7 4847
3 2095 0 8 5527 2
4 2788 0 9 6202
5 3477 1 10 6874

∆:ERE − Eobsfor the energiesEobsof the assigned quantum levels in[15a].

where the Maslov’s correctionµ for all RE is 1
2 and does not

change throughout the range of action-energies we consider.
Actions for the two transversal oscillations aren′ + 1

2 and
n′′ + 1

2. Heren0, n′, n′′ are integers, andn′ andn′′ are small.
This defines the EBK tori situated near the PO, and the energy
of the corresponding quantum states

E(n0, n
′, n′′) = EPO(n0 + 1

2) + ω′(n′ + 1
2) + ω′′(n′′ + 1

2),

whereEPO is the energy–action characteristics of the PO in
question.

Results of such quantization for the bending PO are com-
pared to the assigned quantum levels from[15a] in Table 2.
These levels lie just above the bending PO energy (lowest) in
the energy–action diagram, seeFigs. 1 and 2. Agreement for
other POs is less satisfactory. Our simple approximation can-
not account for tunneling in the case of the local mode PO,
and we can only predict the average (unsplitted) energy. The
symmetric stretch PO at highn seems to be strongly affected
by bifurcation D and the resulting presence of close satel-
lite PO (seeFig. 1). This makes our harmonic approximation
ineffective since at least one of the transversal motions is, ob-
viously, very anharmonic. Nevertheless,Table 2shows that
it is possible to relate relative equilibria, periodic orbits, and
quantum levels and then continue to higher energies.

3

tates
c of
t ergy
s rest
o

are
( mal
m ode
a e
t

N

a gral
n rd 3-

Fig. 2. Energies of periodic orbits (PO) and assigned quantum levels of
ozone. Bold and fine solid lines indicate stable and unstable PO, respectively;
circles mark bifurcations. Quantum levels are computed in[15a]; left- and
rightward dashes correspond to symmetric and antisymmetric levels. Com-
paring toFig. 1, note that the average polyad energyE0(n) is subtracted
fromE(n).

oscillator quantization rule

nclassical= 1

2π

∮
pdq = v1 + v2 + v3 + 3

2
. (3)

Such polyad quantization is compared to the “local” near-
RE scheme of the previous section inAppendix E. We can
now superimpose quantum energy levels and the classical
energy–action diagram of periodic orbits as shown inFig. 2.
We see immediately that the energy of RE’s embraces the
quantum spectrum correctly and that the latter exhibits a clear
hyperpolyad structure.

We should also point out that assignment of the polyad
numbern does not have to rely on the normal mode assign-
ments (v1, v2, v3). In fact, the hyperpolyad assignment can
remain physical even when the normal mode assignment is
impossible. This is discussed inSection 5, where an alterna-
tive way of computing and assigning the value of the hyper-
polyad quantum numberN is proposed.

4. Relative equilibria as equilibria of reduced
classical Hamiltonian

We now follow the approach reviewed inSection 1.2and
u evi-
o educ-
t

.4. Hyperpolyad classification of quantum states

In the previous section, we saw how certain localized s
orrelate with RE. Here we like to globalize the relation
he energy–action diagram for RE and the quantum en
pectrum of the system. This provides motivation for the
f the paper and its appendices.

Conventionally, the normal mode quantum numbers
v1, v2, v3), where subscripts correspond to our nor
odes. We take all quantum states for which normal m
ssignment (v1, v2, v3) was determined in[15a]and comput

he hyperpolyad quantum number

= v1 + v2 + v3

s defined in(1). This number and the classical action inte
classicalcomputed for each RE are related by the standa
ncover the relation of the periodic orbits studied in the pr
us section to the reduced system. Necessary details of r

ion and normal form analysis are presented inAppendix A.
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Table 3
Terms in the first normalized HamiltonianHn describing hyperpolyads of
the ozone molecule; notation is explained in Appendix A

ε2 ε4 ε4

−2.84040 n2 −0.06479 x2
3n +0.63312 s2s1n3

−1.89736 nx3 −0.04646 x2
3s3 −0.16394 s21n3

−2.30240 ns3 +0.32321 x2
3n3 +0.04978 x3

3

−2.18924 nn3 +0.53257 s23n3 +0.67300 ns21

−0.29380 x2
3 +0.47298 s3n

2
3 +1.09409 s21s3

−1.04511 x3s3 −0.04983 x3s3n −0.06681 s22n3

+5.12780 x3n3 −0.02121 s33 +0.72853 x3s3n3

−0.94496 s23 −0.46372 s1s2s3 +0.63782 x3nn3

−2.31425 s3n3 +0.06086 n2s3 +0.15188 x3s
2
1

−5.93052 n2
3 −0.06517 ns23 −1.08630 n2n3

−1.97105 s21 +0.37455 s2x3s1 +1.29031 nn2
3

+7.47017 s1s2 −0.05827 x3n
2 −0.61914 s3nn3

−13.03191 s22 +0.10697 x3s
2
3 −0.02940 ns1s2

−0.16039 x3n
2
3 −0.07270 ns22

+0.04477 n3 −0.71215 s22s3

−0.18590 s22x3

4.1. Reduced Hamiltonian

We normalize the initial Taylor series expanded Hamilto-
nian to orderε4 (degree 6 inz, seeTable 1) using standard
Lie series technique[8a–d]. The transformed Hamiltonian,
or thefirst normal form

Hn = 923.488n+ 208.872x3 + 163.455n3 + · · ·

can be expressed in terms of invariants as shown inTable 3.
We now fix the value ofnand consider it as a parameter. This
defines the first reduced HamiltonianHn as a function on the
first reduced phase spacePn ∼ CP2

n .

4.2. Stationary points ofHn

Qualitative analysis of possible stationary points of the re-
duced system with HamiltonianHn begins with the premise
thatHn is aC2 × T invariant Morse function on the reduced
phase spaceCP2. Appendices B and C(see in particular
Table B.1andFig. B.1) explain how symmetry and topology
arguments can be used to find stationary points of such func-
tion. In particular we show that the asymmetric stretch RE
(as) has fixed coordinates onCP2

n while symmetric stretch
(ss) and bending (b) RE lie on theC2 × T invariant circleS1.

orre-
s des.
T en
i
A e
c e
o -

Table 4
Relative equilibria of ozone on the reduced phase spaceCP2

n : values of
invariants (Table A.1 in Appendix A) and energy obtained from the first
normal formHn, which was computed to order 4

RE n3 s3 x3

ss 0 −1.6026× 10−2n2

− 2.1529× 10−4n3
n− 1.2842× 10−4n3

as n 0 0
b 0 6.0194× 10−3n2

− 2.1533× 10−4n3
−n+ 1.8116× 10−5n3

RE Value ofHn (energy)
ss 1132.3600n− 5.03156n2 − 1.68437× 10−3n3

as 1086.9425n− 10.96017n2 + 0.24877n3

b 714.6150n− 1.23684n2 − 1.53112× 10−2n3

For all REs1 = s2 = t1 = t2 = t3 = 0.

pare this characteristics to numerically computed actions in
Fig. 3.

It should be noted that errors in the normal form expres-
sions forE(n) atn ≈ 10 are of the same order as (or superior
to) the contribution due to then3 term inE(n). This inac-
curacy of the high order normal form can (at least partly)
be attributed to the globally inaccurate representation of the
initial Hamiltonian in terms of Taylor series near the equilib-
rium, seeSection 6.

4.3. Stretching polyads of ozone with resonance 1:1

Like in many triatomic molecules, the frequencies of sym-
metric and antisymmetric stretching modes of ozone,ω1
andω3 are very close to a 1:1 resonance and are known to
form polyads. In order to describe these stretching polyads
within our approach we introduce thesecondadditional ap-
proximate integral of motion (additional dynamical sym-
metry) ns = n1 + n3 and normalize again as explained in

F arac-
t ly
f metric
s

When energies are close to 0, the ss and b points c
pond to the symmetric stretch and bending normal mo
he two modes have the same symmetry and mix whn

ncreases. Position of ss and b onCP2
n depends onn, see

ppendix CandTable 4. Using positions of the three RE w
ompute their energy–action characteristicsE(n) as the valu
fHn (Table 3) at the corresponding points onCP2

n , and com
ig. 3. Comparison of the analytical formulas for the energy–action ch
eristics of RE obtained from the normal formHn and computed numerical
or periodic orbits; ss, as, b, and ls denote symmetric stretch, asym
tretch, bending, and local stretch RE.
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Table 5
Terms in the second normalized HamiltonianHn,ns describing 1:1 stretching
polyads of ozone

H
(0)
n,ns ε2H

(1)
n,ns ε4H

(2)
n,ns

714.615 n −1.2368 n2 −0.015311 n3

395.036 ns −8.5391 nns −0.027586 n2ns
−22.708 x2 +4.6181 n2

s +0.114265 nn2
s

+1.0654 nsx2 −0.082545 n3
s

−4.0297 nx2 +0.197438 nnsx2

−2.8380 x2
2 −0.102746 n2x2

−13.0319 s22 −0.022418 n2
s x2

+0.017961 nx2
2

+0.116763 nsx
2
2

−0.576685 n

+0.372594 nss
2
2

+0.122691 x2s
2
2

+0.052958 x3
2

Appendix D. To orderε4 the second reduced Hamiltonian

Hn,ns = H(0)
n,ns

+H(1)
n,ns

+H(2)
n,ns

+ · · · ,

is given inTable 5. Notice that 0≤ ns ≤ n. It is also con-
venient to use the complimentary quantityδ = n− ns (the
“bending mode” action), such thatn ≥ δ ≥ 0.

Analysis of the second reduced system is entirely analo-
gous to that of the rotational energy surfaces[6] and effec-
tive Hamiltonians on the polyad sphere[12] (seeSection 1).
We look for equilibria (stationary points) of the Hamiltonian
functionHn,ns defined on the 2-sphereS2

ns
. In the stretching

and bending limit withns = n (δ = 0) andns = 0 (δ = n), re-
spectively, these equilibria lift to periodic orbits in the phase
spaceR6

(q,p) of the original system; when 0< ns < n they lift
to 2-tori. The former are, of course, relative equilibria (RE)
which we already studied inSection 4.2. The latter can be
also qualified as RE’s in a broader sense (seeAppendix A.5).
The limiting “purely” stretching polyad withns = n is at the
top hyperpolyad energy and is represented by the energies
of the three stretching RE, the symmetric, asymmetric, and
local stretching modes, shown inFigs. 1 and 2.

Relative equilibria ofHn,ns are analyzed inAppendix D.3.
The two fixed RE correspond to the critical orbits of theC2 ×
T action on the second reduced phase spaceS

2
ns

illustrated
i
l al
t s
b
T in
F
i
r

4
n

the
s ergy

Fig. 4. Stratification of the second reduced phase spaceS
2 (polyad sphere)

under the action ofC2 × T (left). Black dots mark fixed points which cor-
respond to relative equilibria (ss) and (as), white dots show local mode
RE. Second normal formHn,ns for the 1:1 stretching polyad of ozone with
ns = n = 6 as a function onS2 (right). Black and white stripes represent
constant level sets ofHn,ns with arbitrarily fixed spacing.

Table 6
Energy of relative equilibria of ozone which correspond to fixed points of
theC2 × T symmetry group action on the second reduced phase spaceS

2
n,ns

ss :x2 = −ns as :x2 = ns Term

1132.3600 1086.9425 n

−417.7450 −372.3275 δ

−5.03156 −10.96017 n2

+3.08000 +6.87774 nδ

+0.71471 +2.84558 δ2

−1.68437× 10−3 0.24877 n3

+4.42281× 10−2 −0.72327 n2δ

−5.41770× 10−2 +0.52393 nδ2

−3.67798× 10−3 −6.47577× 10−2 δ3

The energy is obtained as the value of the second normal formHn,ns com-
puted to order 4; note thats2 = t2 = 0 andδ = n− ns ≥ 0.

Table 7
Local mode stretching relative equilibrium of ozone: critical valuencrit(δ)
of n for the local mode bifurcation, coordinatex2(x, δ), which defines the
position of ls on the second reduced phase spaceS

2
n,ns

, and energyEls(x, δ)
obtained from the second normal formHn,ns

ncrit x2 Energy Term

1.24438 1.24438 1336.08580
1.13419 0.13419 838.29596 δ

0.78983× 10−1 1060.83409 x

−1.19399× 10−2 −18.79975 x2

−1.12134× 10−2 −17.66161 xδ

−3.56332× 10−3 −3.56332× 10−3 −7.42360 δ2

3.67745× 10−4 −0.18968 x3

1.03450× 10−3 −0.59742 x2δ

8.20619× 10−4 −0.07857 xδ2

2.40667× 10−4 2.40667× 10−4 0.28150 δ3

Solutions are given in terms of powers ofx = n− ncrit > 0 andδ = n−
ns ≥ 0 in the last column, e.g.,ncrit = 1.24438+ 1.13419δ+ · · ·.
n Fig. 4, left. Their energyHn,ns is given inTable 6. In the
imit of ns = n andns = 0 expressions in this table equ
hose for stretching and bending RE inTable 4. Local mode
ifurcate from the (as) point at a very smallncrit, they remain
-invariant and move on theT -invariant circle as shown
ig. 4. Position of these RE onS2 and the value ofHn,ns

s given inTable 7. Graphic representation ofHn,ns in the
egionn > ncrit is shown inFig. 4, right.

.4. Classification of quantum states based on second
ormalization

To compare our results for the relative equilibria of
econd normalized system with the known quantum en
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spectrum of ozone[15a]we should introduce quantum num-
berNs of the stretching 1:1 polyads. The combined quantum–
classical correspondence rule is

n = N + 3
2, N = 0,1, . . . , (4a)

ns = Ns + 1, Ns = 0,1, . . . , N. (4b)

Here the value of the classical actionns = n− 1
2 corre-

sponds to the maximum quantum numberNs in the hyper-
polyadN; the half-quantum remains in the bending mode, cf.
Appendix E.

The energy–action plot of RE of the second normalized
system is shown inFig. 5. In the limiting cases (ns = n for
the stretching RE ss, as, and ls, andns = 0 for the bending
RE) our curves represent the RE of the first normalized sys-
tem shown inFigs. 1 and 2. Whenn > ns > 0, they represent
the energyHn,ns of the RE of the second normalized system.
The curves, representing such RE for the special values1

2, 11
2,

and 21
2 of the differencen− ns, are plotted inFig. 5. They

correspond to the uppermost, second top, and third top quan-
tum 1:1 polyad. The structure of these “small” polyads repli-
cates the structure of then = ns limit. While the 1:1 polyads
overlap partially in energy, the RE of thesametype remain
well separated and the 1:1 approximation remains valid in the
studied action range. However, the visualization of the cor-
responding quantum level structure is compromised. Despite
t d and
a l
d ing to
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n is is
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t

4
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Fig. 5. Energy of relative equilibria, the polyad structure, and quantum
levels of ozone. Bold solid lines show the energy of stationary points of
Hn; fine dotted lines show corresponding numeric energy–action data (in
the scale of the figure they can only be seen for as and ls RE at high
energy); fine solid lines show the energy of stationary points ofHn,ns

with n− ns equal to 1
2 , 11

2 , and 21
2 ; the dashed line marks the point

of the as→ ls bifurcation. Short and long ticks show levels assigned
in [15a,b] and computed inSection 4.5, respectively. The base quantity
1378.15+ 914.027N − 3.1724N2 − 0.0084978N3 is subtracted.

Table 8
EnergiesEof vibrational quantum states of ozone computed using the quan-
tized second normal formHn,ns with subtracted zero point energy of 1455.3

State E (cm−1) State E (cm−1) State E (cm−1)

00 000 1 1 43 211 3855 6 60 4163
10 010 702 1 43 310 3968 1 61 4436
11 001 1043 1 44 004 4006 5 61 4543
11 100 1103 0 44 103 4028 6 62 4715
20 020 1400 1 44 202 4146 5 62 141 4799 15
21 011 1728 1 44 301 4253 3 62 4928
21 110 1797 0 44 400 4368−2 63 4998
22 002 2059 1 50 050 3477−1 63 132 5055 19
22 101 2112 1 51 3764 63 5181
22 200 2201 0 51 140 3861 3 64 024 5280 14
30 030 2095 0 52 4057 64 123 5309 18
31 021 2410 2 52 131 4132 10 63 330 5317 7
31 120 2488 1 52 230 4251 4 64 5441
32 012 2728 2 53 023 4352 6 65 015 5548 29
32 111 2788 3 53 122 4402 12 65 114 5558 17
32 210 2887 0 53 221 4520 12 64 321 5568 10
33 003 3048 2 53 320 4644 0 64 420 5708 6
33 102 3086 3 54 014 4645 12 65 213 5716 18
33 201 3188 2 54 113 4670 11 66 006 5796 29
33 300 3289 −1 54 212 4795 12 66 105 5798 14
40 040 2788 0 54 311 4912 15 65 5820
41 031 3088 2 55 005 4924 5 65 5962
41 130 3176 2 55 104 4932 10 66 204 6010 15
42 022 3394 3 54 5039 66 6077
42 121 3462 6 55 203 5086 9 65 6102
42 3570 55 302 5180 9 66 402 6217 12
43 013 3702 4 55 401 5312 4 66 6361
43 112 3746 6 55 500 5438−3 66 600 6498−4

Each state is characterized by quantum numbersN andNs. For states listed
in [15a], the normal mode assignment [v1v2v3] (second column) and the
E − Eobs difference (last column) are given.
he overlap and the incompleteness of the list of observe
ssigned quantum levels of ozone provided in[15a,b], severa
oublets of quasidegenerate quantum levels correspond

wo equivalent RE of the local stretching mode ls can be
ear the bottom of 1:1 polyads. A more detailed analys
ossible using quantum energies inTable 8in the next sec

ion.

.5. Quantization of the second normal form

We quantize our second normal formHn,ns in order
o detail the global qualitative description of the wh
nergy spectrum. As shown inAppendix D.3, invariants
1
2x2,

1
2s2,

1
2t2) generate a Poisson algebra which is a stan

o(3) with Casimirj = 1
2ns. We replace these invariants

ngular momentum operators (ˆ1, ̂2, ̂3) and diagonalize th
2j + 1) × (2j + 1) matrix of Ĥn,ns (̂1, ̂2, ̂3) in the stan
ard basis of spherical harmonic functions|j,m〉.

Of course, we should not forget the obvious limitati
f our classical normalization and the above quantiza
oth remain correct only in the sense of main (=class
ontributions to the high degree terms. Thus starting with
lassical functionHn,ns , we have no way to define corre
rdering of noncommuting operators (ˆ1, ̂2, ̂3). The bes
e can do is to use symmetrized Hermitian combination
Despite all apprehension, our method provides exce

esults shown inTable 8. Increasing errors for higher polya
hould be explained (at least partially) not by the breakd
f the polyad approximation but rather by the deficienc

he Taylor series representation of the initial Hamilton
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Note that similar factors cause the divergence of classical RE
energies illustrated inFig. 3.

5. Direct polyad assignment

To demonstrate the validity and utility of our hyperpolyad
classification, we took quantum energy levels of ozone iden-
tified in [15a,b]. However, the normal (or local) mode identi-
fication of computed quantum levels often turns out difficult
and even prohibitive. As pointed to us by Tyuterev[22], one
of the authors of the direct quantum computation for ozone
[15a,b], assignment in terms of conventional normal-mode
quantum numbers (v1, v2, v3) becomes increasingly dubious
starting withN = 4, . . . ,6. In this region, wavefunctions be-
come heavy mixtures distributed over many basis functions.
Often there is no clearly dominant function and sometimes
the leading contribution can be as low as 5%. Furthermore,
the node analysis often does not confirm the traditional “spec-
troscopic” assignment. This all is further complicated by the
problem of internal-to-normal coordinate conversion and by
the extreme sensitivity of some of the predicted states to
small variations of potential parameters and basis. It should
be pointed out, that similar difficulties are typical for other
molecules.
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Table 9
Hyperpolyad invariant for the potential in[15a]expressed using initial nor-
mal mode coordinates

Order Coefficient Term Coefficient Term

ε0 1 n

ε1 × 10−2 -4.53769 ¯z1z̄3z3 -0.72735 ¯z1z̄2z2

1.83110 ¯z2z̄3z3 1.02949 ¯z1z1z̄2

-0.42743 z2
1z̄2 -2.15952 z1z̄

2
3

-2.15393 ¯z1z̄
2
3 0.79289 z2z̄

2
3

0.17609 z1z̄
2
2 0.40596 z1z

2
2

0.85740 z2z
2
3 1.45156 ¯z2z

2
2

0.37588 ¯z2
1z̄2 -1.26316 ¯z1z

2
1

0.60643 ¯z3
2 -0.51476 ¯z3

1

1
2ε

2 × 10−2 2.06150 ¯z1z1z̄3z3 0.436622 ¯z1z1z̄2z2

0.829110 ¯z2z2z̄3z3 0.260237 ¯z2
1z

2
1

0.319093 ¯z2
2z

2
2 0.817718 ¯z2

3z
2
3

-0.362839 z1z2z̄3z3 -0.431633 ¯z3z3z̄1z2

0.265534 ¯z1z1z̄
2
3 -0.073159 ¯z1z1z̄

2
2

0.062587 ¯z2z2z̄
2
3 -0.022140 ¯z1z̄

2
2z2

-0.101320 ¯z2
2z̄3z3 -0.178183 ¯z1z

2
1z2

0.040851 z2
1z̄2z2 0.307898 z2

1z̄3z3

-0.207081 z1z2z
2
3 -0.192657 z1z̄2z

2
3

-0.188263 ¯z1z2z
2
3 -0.004925 ¯z2

1z1z2

0.010098 ¯z2
2z2z1 -0.504487 z2z̄

2
3z1

0.001610 z4
1 0.032320 z4

2

0.049643 z4
3 0.018965 ¯z3

1z1

0.198837 ¯z3
3z3 -0.052649 z3

1z2

-0.011783 z1z
3
2 0.154109 ¯z2z

3
2

-0.061883 z1z̄
3
2 -0.033397 z3

1z̄2

0.141450 z2
1z

2
3 -0.028745 z2

2z
2
3

0.008507 z2
1z

2
2 0.094462 ¯z2

2z
2
3

0.737032 ¯z2
1z

2
3 -0.010975 ¯z2

1z
2
2

Coordinates (z, z̄) are defined inAppendix A; not self-conjugate monomials
enter with their complex conjugate.

produce well the original Hamiltonian. On the quantum side,
computing expectation values of high powers of momenta
p requires high order derivatives, which can be difficult to
evaluate numerically. We believe, however, that in the case
of ozone, using a few first orders ofL−1n should enable ad-
vancing hyperpolyad assignments well beyond the today’s
limit indicated inFig. 5andTable 8.

6. Discussion

In general, due to their rotator analogy, the two-mode
polyads (such as the stretching polyads of ozone) are the only
polyads, whose dynamical description is relatively widely
implemented (see series of papers by Kellman and co-
workers, such as[12,23,14]). Polyads formed by a larger
We saw that the polyad numbersN andNs of ozone re
ained valid at high excitations, while the individual norm
ode assignments (v1, v2, v3) were no longer applicable.
rinciple,N (andNs) can be computeddirectly from quantum
avefunctions. Since wavefunctions are defined on the or
al configuration space, we should first expressn in terms of

he original normal mode coordinatesq and conjugate mo
entap, seeAppendix A. This gives a series

−1n = n+ ε[L−1n]1 + 1
2ε

2[L−1n]2 + · · · , (5)

hose high order terms [L−1n]k are given inTable 9. The
olyad numberN is the expectation value〈L−1n〉 for the
uantum analogue ofL−1n.

In order to estimate the accuracy of the proposed me
e checked how well the quantityL−1n in (5) (truncated

o some order) is conserved along the trajectories o
riginal system in the phase spaceR6

(q,p). This could be
one easily for the RE trajectories found inSection 3. At
given fixed value of action and energy, we comp

he action
∫
pdq and 2πL−1n along RE and studied the

ifference. In most cases this difference remained s
n some cases, however, it peaked at sharp turning p
here our Taylor series reproduced the potential particu
oorly.

We should admit that in practice, the proposed assign
ethod has a number of limitations. For example, theL−1n

uantity is obtained as a series in normal mode coordin
q, p). Its extrapolation to high energies can be made d
ult not only due to the “legitimate” restrictions of the poly
pproximation, but also because the Taylor series fails t
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number of modes are often introduced formally in relation to
good quantum numbers (cf.[13,24d,f]), and very few stud-
ies attempted to analyze them dynamically. Relative equi-
libria of such systems are commonly treated as simple pe-
riodic orbits, though their relation to the polyad integral of
the normal form approximation and their role in understand-
ing the internal structure of polyads is intuitively recognized
[27].

Arguably, the principal obstacle to the dynamical analy-
sis of polyads formed by a larger number of modes is the
geometry of their reduced phase spaces. Thus, even though
theCP2 polyad space of the 1:1:1 resonance system is suffi-
ciently simple[31,32,33a–d]for being used as widely as the
“polyad sphere”, it is rarely mentioned in molecular literature
on three mode systems. It is possible that some researchers
avoidCP2 because they underestimate the broadness of the
1:1:1 resonance in an anharmonic system and favor more
elaborate resonance models, which reproduce more closely
the ratio of the harmonic frequencies of the molecule, e.g.
5:3:5 in the case of ozone. We hope that our present work
would finally convince most of the skeptics of the versatility
of CP2.

It should be noted that resonances complicate the situa-
tion even further. Thus, in the simplest case of the two mode
oscillator system with higher resonances, the reduced phase
space is a topological sphere, which is, unlike the 1:1 polyad
s vely
i las-
s Fig.
4
s ti-
c ular
c s
i e
m s can
b pro-
j sed
i
s :1:2
p lize
[ an
a me-
t s
m rest-
i he
1 in an
i rals
n hich
i re
S the
s gular
a e
(

iva-
t mics
a a fun-

damental molecular system of current interest, and (ii) to
make explicit the relationship between the polyad approxi-
mation and RE. Far from trying to be didactic, we like tocom-
plementthe significant body of the contemporary work on the
vibrational analysis of triatomic and polyatomic molecules.
We strongly believe that only complete understanding of the
hyperpolyad dynamics can enable further progress in this
field.

Figs. 2 and 5illustrate the central role, which RE play
in shaping the hyperpolyad structure of the quantum energy
level spectrum. This relation of RE to the existence of hyper-
polyads is further confirmed by the agreement of numerical
action–energy data (Section 3) with the analytical expansions
forE(n) obtained in the hyperpolyad approximation (Table 4).
In fact, the deviation of the two is almost invisible on the scale
of Fig. 2.

It is tempting to explain, why this works so well in the
case of ozone and to generalize, if possible, beyond this case.
The answer is, however, difficult to give quantitatively. The
most important resonance in ozone is the 1:1 resonance of
stretching modes. This resonance is included in the 1:1:1
polyad model and is treated correctly. At the same time, the
bending-to-stretching frequency ratio of 3:5 is sufficiently
far from the Fermi resonance 1:2 and can be ignored at low
polyad numbersn. We can, therefore, argue that the plain
1:1:1 hyperpolyad approximation applies in cases which are
f low-
e study
i t
o s
8 urce
o ap-
p es
h

the
R hich
c m. It
w rel-
a s
o very
p tion–
v r-
e (cf.
[ lyad
a

A

and
S 00-
0 tin-
u m-
m ith
h is
c

pace,not smooth. It has been discussed comprehensi
n the mathematical literature in the example of the “c
ic” two-mode Fermi system, or the 1:2 resonance; see
.1 of Appendix B.4 (Example 3) in[34,36, p. 40], and the
emiclassical analysis in[35]. Regrettably, this mathema
al work has been as yet of little impact on the molec
ommunity, and the geometry of them1:m2 polyad space
s still not clearly understood[37]. Geometry of the thre

ode polyad spaces in the case of higher resonance
e very complex. Such spaces are known as weighted

ective spaces[38]. Only in some cases, such as 1:2:2 u
n [14] to model ozone, they can be described asCP2 with
ingularities. The best known counterexample is the 1
olyad space, whose geometry is very difficult to trivia

39]. However, this geometry can be simplified due to
dditional Lie symmetry, such as the axial SO(2) sym

ry of linear triatomic molecules. The CO2 molecule and it
echanical analogues is the most recently revisited inte

ng example[40a–c], where singular reduction of both t
:1:2 polyad symmetry and the SO(2) symmetry results

ntegrable approximation with two respective first integ
≥ 0 and−n < 0 < n and the reduced phase space, w

s either a topological sphere (for0 = 0) or a smooth sphe
2. Our 1:1:1 model of ozone, where we also introduce
econd Lie symmetry, is simpler because reduction is re
nd all second reduced phase spaces withns < n are the sam
Section 4.3).

The above observations led to our two principal mot
ions for this paper: (i) to uncover once again the dyna
nd phase space geometry of higher polyad systems in
ar from exact low-order resonances. Furthermore, the
st 3:5 resonance term is of degree 8, while our present

s limited to degree 6 (orderε4). Indeed,Fig. 3suggests tha
ur normal form formulas diverge quickly whennapproache
, . . . ,10. At the same time, another, more obvious so
f this divergence is the inefficiency of the Taylor series
roximation of the potential[15a], which goes bad at degre
igher than 4.

It is indisputable and, in fact, widely accepted, that
E-based analysis is a basic and very effective tool, w
an be used in systems with many degrees of freedo
ill be interesting to study how it can be extended to
tive periodic orbits (Appendix A.5) and find application
f such extension in real molecular systems. Another
romising generalization is the analysis based on rota
ibration relative equilibria [33d]. It will be equally inte
sting to study continuation of RE to high energies

29]) in order to understand the breakdown of the po
pproximation.
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Appendix A. Reduction of the 1:1:1 symmetry and
first normal form

Consider the vector fieldXn of the 1:1:1 harmonic oscil-
lator with Hamiltonian

n = 1
2(q2

1 + p2
1 + q2

2 + p2
2 + q2

3 + p2
3). (A.1)

In complex phase space coordinates

zk = qk − ipk, z̄k = qk + ipk, k = 1,2,3,

the flow ofXn is a rotation

ϕn : (z1, z2, z3, t) → (eitz1,e
itz2,e

itz3)

of the complex spaceC3 ∼ R6
(q,p).

We transform the initial phase spaceC3 into the phase
spacẽC3 of the normalized system using a near identity trans-
formationL, which can be constructed as a Lie series[8a–d].
The transformed HamiltonianH, or thenormal form, is a
formal power series in variables ˜z. We expect that in the nor-
malized coordinates ˜z the Hamiltonian flowϕH of our initial
system hasϕn as a component. In other words, all terms in
the seriesH Poisson commute withn, i.e., they are invariant
w ,
r

c
t
t e
g ry
t In
p
T

A

s of
( l
p it of
ϕ

w
t le
|
t x
p

that
t -
b
v

n

Table A.1
Invariant polynomials of the 1:1:1 oscillator action used in the construction
and analysis of the hyperpolyad approximation for a molecule with three
vibrational modes

Expression Expression

n 1
2(z1z̄1 + z2z̄2 + z3z̄3) ns

1
2(z1z̄1 + z3z̄3)

n1
1
2z1z̄1 x1

1
2(z2z̄2 − z3z̄3)

n2
1
2z2z̄2 x2

1
2(z3z̄3 − z1z̄1)

n3
1
2z3z̄3 x3

1
2(z1z̄1 − z2z̄2)

s1
1
2(z2z̄3 + z3z̄2) t1

1
2 i(z2z̄3 − z3z̄2)

s2
1
2(z3z̄1 + z1z̄3) t2

1
2 i(z3z̄1 − z1z̄3)

s3
1
2(z1z̄2 + z2z̄1) t3

1
2 i(z1z̄2 − z2z̄1)

At the same time, such terminology helps to distinguish
hyperpolyads of ozone from the widely known stretching
polyads of this molecule, where one hyperpolyad contains a
family of “smaller” purely stretching polyads.

A.2. Invariant polynomials

Consider all polynomials in (z, z̄) which are invariant with
respect to the flowϕn of the vector fieldXn of the 1:1:1
oscillator. In other words, consider all polynomials in (z, z̄)
which Poisson commute withn. A direct calculation shows
that the total degrees in (z1, z2, z3) and (z̄1, z̄2, z̄3) of these
polynomials must equal. The multiplicative ring of allϕn-
invariant polynomials is generated by quadratic polynomials
of the formzz̄. Our particular choice of such generators is
presented inTable A.1.

A.3. Integrity basis

Any ϕn-invariant polynomial function, such as the normal
formH, can be expressed in terms of invariants inTable A.1.
Although these invariants are linearly independent, there is
a number of algebraic dependencies (or “sygyzies”) among
them. This means that the expression ofHmay not be unique.
We say that the ring of allϕn-invariant polynomials is not
generated freely.

e
s

R

H
i r-
b
b

A

pro-
c ce is
t
T
e re
ith respect to the oscillator symmetryϕn. We can, therefore
educe theϕn component.

After the near identity normalization transformationL is
onstructed, we can find the inverseL−1 : C̃3 → C

3 also in
he form of a Lie series[8a–d]. On the transformed spaceC̃3,
he integraln equals the quadratic form in(A.1), and RE ar
eometric circlesS1. TheL−1 transformation is necessa

o reconstructn and its orbits RE for the original system.
articular,n becomes a seriesL−1n in (z, z̄), see Eq.(5) and
able 9.

.1. Reduced phase space

Sinceϕn acts freely onC̃3 (for all n > 0) reduction is
traightforward. We descend on the constant level setn
which is a hypersphere of radiusρ = √

2n) and identify al
oints of this set which belong to the same circular orb
n. Hence a point on the reduced phase spacePn, which
e call thehyperpolyad space, corresponds to all points ˜z on

he transformed phase spaceC̃3 which have the same modu
z̃| = ρ and which differ only in total phase exp(it). It follows
hat for anyn > 0 the spacePn is isomorphic to a comple
rojective spaceCP2.

One possible etymology of the term hyperpolyad is
he associated polyad integraln in (A.1) and the polyad num
ern in (1) are related directly to the hyperradius2 in the
ibrational phase space of the system:

= 1

2

∑
(p2

i + q2
i ) = 1

2
22.
It is possible, however, to representH uniquely using th
o-calledintegrity basiswhose particular realization is

(n; x3, s1, s2, s3) × {1, n3, n
2
3, t1, t2, t3}. (A.2)

ere the ringR is freely generated by the so-calledprincipal
nvariants (x3, s1, s2, s3) andn. (These invariants enter in a
itrary degrees.) All other invariants areauxiliaryand should
e used as factors of degree 1 or 0.

.4. Reminder on the two mode case

For a lower dimensional example consider a similar
edure for the 1:1 oscillator. In this case, the polyad spa
he spaceCP1 which is diffeomorphic to a 2-sphereS2 [9].
his space is often called the polyad phase sphere[12]. Gen-
rators (j1, j2, j3) of the ring of invariant polynomials a
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angular momentum components defined in the way similar
to (1

2x3,
1
2s3,

1
2t3) and bound by the relation

j2 = j2
1 + j2

2 + j2
3,

where 2j is, of course, equivalent to the polyad integraln.
With no other symmetries (such as time reversal, etc) taken
into account this ring has the structure

R(j; j1, j2) × {1, j3}.

In this paper, we work with two different realizations of the
above construction: theC2-invariantS2 subspace ofCP2 and
the phase space of the second reduced problem in the approx-
imation of the 1:1 stretching mode resonance. In the latter
case, we use invariants (x2, s2, t2).

In quantum mechanics, an entirely analogous construc-
tion of angular momentum operators in terms of two boson
operators was given by Schwinger[17]. However, while the
classical reduced rotational system is equivalent to the re-
duced 1:1 resonant oscillator system, thequantization rule
for the integralj of each system is different. In the latter sys-
tem,n = 0,1,2, . . . andj = 1

2n.

A.5. Relative equilibria

ion
t and
p s-
s mical
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T e
o
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s
e n
w o
s

S nt
p

n

R sys-
t
H h
l i
a me-
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b ring
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t riodic

orbits of such system on the phase spacePn are defined by
its dynamics (seeAppendix A.6), i.e., they are not group or-
bits. These periodic orbits lift to 2-tori inP, which should be
calledrelative periodic orbits.

A.6. Dynamics of the reduced system

Equations of motion for the reduced system are written
using the Poisson algebraP formed by the eight invariant
polynomials

{x2, s1, s2, s3, n3, t1, t2, t3}.

This algebra is isomorphic to su(3). To find its structure con-
stants we use definitions inTable A.1, compute the Poisson
brackets of the above generators in the initial variables (z, z̄)
and re-express the results in terms of the integrity basis(A.2).
The integral of motionn is, of course, the Casimir ofP. Once
the structure constants are known, the eight equations of mo-
tion are computed as brackets of the reduced HamiltonianHn

(an element in the enveloping algebra) and the elements of
P. An analysis of these equations is beyond the scope of our
paper which concentrates solely on relative equilibria. How-
ever, inSection 4.2we consider the dynamics restricted to
theC2-invariant subspaceS2 ⊂ CP2 and inSection 4.3we
s both
c
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In this work, we work with an integrable approximat
o a Hamiltonian system with three degrees of freedom
hase spaceP = R6

(q,p). To build this approximation, we a
ume that the original system has an approximate dyna
ie symmetryG1:1:1 = SO(2), whose action onP is given
y the flowϕn of the system with Hamiltoniann in (A.1).
heG1:1:1 action onP is free, and after its reduction, w
btain the first reduced system with HamiltonianHn on the
hase spacePn = CP2

n . Each point ofPn with n > 0 repre-
ents (lifts to) a circular orbitS1

n ofG1:1:1, i.e., ofϕn. Relative
quilibria (RE) of our system are special periodic orbits iP,
hich coincide with the circular orbitsS1

n, and which map t
tationary points ofHn onPn.

We then consider yet another dynamical symmetryG1:1 =
O(2) associated with the flowϕns of the model 1:1 resona
urely stretching Hamiltonian

s = 1
2(q2

1 + p2
1 + q2

3 + p2
3). (A.3)

educing second time, we arrive at the second reduced
em with phase spacePn,ns = S2

n,ns
, where 0≤ ns ≤ n, and

amiltonianHn,ns . Now, for 0< ns < n, we have RE, whic
ift to special dynamically invariant 2-tori inP. These tor
re group orbits of the total approximate dynamical sym

ryG = SO(2)× SO(2)= S2 induced by the combined flo
n ◦ ϕns . Forns = n andns = 0, we haveS1 (= periodic or-
it) RE. They correspond to the ones already found du

he first reduction.
Alternatively, the first reduced system can have no

inuous symmetries and cannot be reduced further. Pe
tudy the dynamics of the second reduced system. In
ases we use an appropriate so(3) subalgebra ofP.

ppendix B. Finite symmetries

Since the three-atom permutations are prohibitive a
nergies we consider, the total symmetry group of the v

ional Hamiltonian(2) is theZ2 × Z2 group of order fou
hich, is generated by the bond permutation

2 : (ξ1, ξ2, α, η1, η2, pα) → (ξ2, ξ1, α, η2, η1, pα),

nd the momentum reversal

: (ξ1, ξ2, α, η1, η2, pα) → (ξ1, ξ2, α,−η1,−η2,−pα),

lso known as time reversal. We describe below the co
uences of the presence of this symmetry group.

The generators of the groupZ2 × Z2 act on the norma
ode variables as follows

2 : (q1, q2, q3, p1, p2, p3) → (q1, q2,−q3, p1, p2,−p3),

: (q1, q2, q3, p1, p2, p3) → (q1, q2, q3,−p1,−p2,−p3).

ewritten in terms of (z, z̄), this action becomes

: (z1, z2, z3) → (z̄1, z̄2, z̄3),

2 : (z1, z2, z3) → (z1, z2,−z3).
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Table B.1
Invariant subspaces of the action ofZ2 × Z2 and its subgroups on the phase
spaceCP2

Stabilizer Coordinate restrictions Topology

C2 × T √
2n(0,0,1) Point

C2 × T √
2n(sinθ, cosθ,0), θ = 0, . . . ,2π CircleS1

T (z1, z2, z3), Im z1 = Im z2 = Im z3 = 0 RP2

C2 (z1, z2,0) CP1 ∼ S2

TheCP2 restrictions onzare implied.

The reduced system inherits the above finite symmetries. Tak-
ing them into account facilitates finding and analyzing rela-
tive equilibria.

B.1. Action on the reduced phase spaceCP2

Actions of different symmetry groups onCP2 were con-
sidered in[31] and later in[32]. Due to the presence of the
Z2 × Z2 action, the phase spaceCP2 is not homogeneous
and has several invariant subspaces which are characterized
in Table B.1andFig. B.1. In particular, we find one fixed point
with coordinatesz = (0,0, z3). Since the phase ofz3 is irrel-
evant for the characterization of the point (0,0, z3) onCP2,
we use (0,0,

√
2n). We also note aC2 invariant 2-sphere (or

CP1). This subspace is dynamically invariant because the
spatial symmetryC2 is symplectic. It receives our special at-
tention inSection 4.2. We further remark that theT -invariant
real projective spaceRP2 and theC2-invariant sphereS2 in-
tersect on a circleS1, and that the fixed point (0,0, z3) lies
onRP2.

F f
Z g
t (ss),
b arked
b

B.2. Action on dynamical invariants

Action of Z2 × Z2 on CP2 and resulting invariant sub-
spaces ofCP2 can be most conveniently studied using the
(z, z̄) definitions of the invariants inTable A.1. We find that

T : (n, x, s, t) → (n, s, x,−t),
C2 : (n, x, s3, t3) → (n, x, s3, t3),

C2 : (s1, s2, t1, t2) → (−s1,−s2,−t1,−t2).

In particular it follows that (s1, s2, t1, t2) vanishon theC2-
invariant sphereS2 ∈ CP2. Moreover, the variablez3 van-
ishes on this sphere (seeTable B.1) and hence

n3 = s1 = s2 = t1 = t2 = 0. (B.1a)

Remaining invariants (x3, s3, t3) are bound by the relation

x2
3 + s23 + t23 = n2. (B.1b)

We can, therefore, represent theC2-invariant sphere embed-
ded in an ambient spaceR3 with coordinates (x3, s3, t3).

We can also account for above finite symmetry properties
of the dynamical invariants (n, x, s, t) in order to improve the
integrity basis introduced inAppendix A.3and thus make ex-
pressing the normal formH even more efficient. First, since
our system is invariant with respect to the time reversal oper-
a
w th
t
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ig. B.1. Stratification of the reduced phase spaceCP2 due to the action o

2 × Z2, seeTable B.1. The 2-sphere and theRP2 space are glued alon
he circle. Small circle dots show relative equilibria, symmetric stretch
ending (b), and asymmetric stretch (as); the fixed point (0, 0, 1) is m
lack.
tionT which changes sign of auxiliary invariants (t1, t2, t3),
e can see immediately thatH belongs to a smaller ring wi

he structure

(n; x3, s1, s2, s3) × {1, n3, n
2
3}.

urthermore, we can also account for theC2 symmetry (se
ppendix B) but at the cost of having a more sophistica

ntegrity basis

(n; x3, s3, s
2
1, s

2
2) × {1, n3, n

2
3, s1s2, n3s1s2, n

2
3s1s2}.

ppendix C. Stationary points of the first normal
orm Hn

We use the information on symmetry and topology of
rst reduced system in order to predict relative equilibria (
s stationary points of the first normal formHn. We then show
ow to find their exact positions onCP2

n for a concreteHn.

.1. Prediction based on symmetry and topology

We assume thatHn is aZ2 × Z2 invariant Morse func
ion onCP2

n whose number and type of stationary point
llowed by the topology ofCP2 and the symmetryZ2 × Z2.
he action ofZ2 × Z2 on CP2 is detailed inAppendix B.
his action has the isolated fixed point (0,0,

√
2n) (critical

rbit) whichmustbe the stationary point ofHn. Furthermore
n should obey Morse requirements forCP2 and for each
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invariant subspace inTable B.1. In particular recall that the
numbersck of stationary points of Morse indexk of a Morse
functionHn onP obey the Euler equality

∑
(−1)kck =

∑
(−1)kbk,

wherebk are Betti numbers forP. Consulting the Betti num-
bersbk and the Euler characteristicsσ =∑(−1)kbk of the
subspaces listed below,

Space b0 b1 b2 b3 b4 σ

CP2 1 0 1 0 1 3
RP2 1 02 0 1
S

2 1 0 1 2
S

1 1 1 0

we conclude thatHn should have at least three stationary
points onCP2, two onS2, and two onS1.

Note that, theRP2 space has Euler characteristics 1. [This
space is non-orientable, its first homology groupH1 isZ2 and
H2 is trivial, so that ranksb1 = b2 = 0.]. A Morse function
onRP2 should have at least three stationary points.

All these requirements can be satisfied by the three points
representing symmetric stretch (ss), asymmetric stretch (as),
a oint,
w
F are
a ed
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t
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we use the 2-sphere restriction(B.1) with t3 = 0, and recall
that at smalln, the value ofx3 equals approximatelyn for the
ss point and−n for the b point whiles3 is close to 0. Then

x3 = ±n
(

1 − 1

2

s23
n2 − 1

8

s43
n4 − · · ·

)
.

The formal series solution fors3 andx3 is obtained by New-
ton’s iteration and is shown inTable 4.

C.3. Stability of RE

Given the normal mode frequenciesω1 > ω3 > ω2 of
ozone and the Morse requirements forCP2 and the subspaces
involved, we can further infer that in the absence of any other
stationary points the signatures should be (− − − −) (Morse
index 4), (+ + − −) (index 2), and (+ + + +) (index 0), re-
spectively. The ss and b points remain stable when restricted
onS2, where their signatures are (− −) (maximum, index 2)
(+ +) (minimum, index 0), respectively. The Morse index of
ss and b onRP2 is also 0 and 2, while the as point onRP2 is
unstable with signature (− +) and index 1. In general, Hamil-
tonian stability of RE cannot be found from Morse indexes. It
is clear, however, that ss and b remain stable (elliptic) as long
as they correspond to the global maximum and minimum of
e

w (cf.
T

H

a
p ry
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f
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λ

I r-
v e
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i

nd bending (b) relative equilibria. The as RE is a fixed p
hile ss and b lie on the circleS1 = S2 ∩ RP2 as shown in
ig. B.1. All RE have time reversal symmetry; ss and b
lsoC2-invariant. This minimal RE set is further confirm
y the stability analysis.

.2. Position of stationary points

When energies are close to 0 (near the equilibriumz = 0)
ndn is small the ss and b points correspond to the s
etric stretch and bending normal modes with coordin√
2n,0,0) and (0,

√
2n,0), respectively. To find the positio

f ss and b we write equations of motion onCP2 and restric
hem to theC2-invariant sphereS2 (seeSection A.4). The
hree equations remaining after such restriction are writt
erms of the so(3) algebra generated by (x3, s3, t3). They re-
emble Euler’s equations. We further restrict these equa
o theT -invariant circleS1 by settingt3 = 0. The Hamil-
onianHn is T -invariant and does not depend ont3. As a
esult,ẋ3 andṡ3 are multiples oft3 and vanish. To solve th
ast equation

dt3
dt

= {t3, Hn} = 417.7450s3 + fn(x3, s3)ε2 + · · · = 0,

here

n = 2.0902(x2
3 − s23) − 3.7947ns3 + 2.6046x3s3

+4.6048x3n,
nergy at givenn.
To check the stability of the as RE in the limitn → 0,

e rewrite the lowest order of the first normal form
able A.1)

(0)
n = 923.488n+ 208.872x3 + 163.455n3

≈ 1087n+ 45n1 − 372n2,

s a local linearized Hamiltonianω′
1n1 + ω′

2n2 near the fixed
oint (as) withz = (0,0,

√
2n). We conclude that at ve

ow n the (as) RE is stable (elliptic) with one small posit
requencyω′

1 and one large negative frequencyω′
2. To find

ow ω′
1 andω′

2 change withn, we can use (z1, z2) as loca
oordinates nearz = (0,0,

√
2n), express

3 = z̄3 =
√

2n− z1z̄1 − z2z̄2,

nd linearize higher order termsHn(z1, z2, z̄1, z̄2) from
able 3. The eigenvalues of the Hamiltonian matrix of t

inearization are

2
1 = −452 + 668.97n+ 475.81n2 − 14.517n3 + · · · ,
2
2 = −3722 + 11465.5n− 190.89n2 + 29.756n3 + · · · .
t can be seen thatλ2 remains imaginary within the inte
al n = 0, . . . ,10 of the validity of our normal form, whil
1 becomes quickly real atn ≈ 1.50. This bifurcation cor
esponds to the normal-to-local mode transition describ
oint A in Section 3.2(seeFig. 1). It is further analyzed us

ng the second normal form inSection 4.3(seeFig. 4) and
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Appendix D.3. The value of 1.50 agrees well with 1.24 ob-
tained inSection 3.2.

Detailed analysis of the equations of motion onCP2
n can

also provide Hamiltonian stability of the ss and b RE, as well
as of the local mode RE. This, however, requires extensive
calculations because their coordinates onCP2 are not fixed.
Examples of such analysis can be found in[33d,c,].

Appendix D. Second normal formHn,ns

The first reduced system has two degrees of freedom. We
can further normalize this system, if a second approximate
integral of motionns = n1 + n3 in (A.3) is introduced. This
new approximation reflects the fact that the ratio of frequen-
cies of the two stretching modes of ozoneω1 andω3 is very
close to 1:1 (seeSection 4.3).

D.1. Invariants and integrity basis

Like in the case of the hyperpolyad integraln, we consider
the new dynamical symmetry induced by the flow

ϕns : (z1, z2, z3, t) → (eitz1, z2,e
itz3)

o
i
t
w
t e
m
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n ants
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x
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ϕ
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D
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p ther 2
s

defined by(D.1) in the ambient spaceR3 with coordinates
(x2, s2, t2). The action of the finite symmetry groupZ2 × Z2
on thisR3 space

C2 : (x2, s2, t2) → (x2,−s2,−t2),

T : (x2, s2, t2) → (x2, s2,−t2),

can be easily found usingAppendix B.2. It can be seen that
Z2 × Z2 acts onR3 and on the sphereS2

ns
⊂ R3 as a point

group of transformationsC2v with its axisC2 oriented as axis
x2. The action of this group onS2

ns
has two fixed points at

the north and south poles, seeFig. 4, left, which form two
one-point critical orbits. The reflection planesT andC2 ◦ T
intersectS2

ns
on two circles, each circle minus two critical

orbits forms a one-dimensional stratum.

D.3. Dynamics and stationary points

A Morse functionHn,ns on S2 should have at least two
stationary points, a maximum and a minimum. In our case, the
two fixed points of theZ2 × Z2 symmetry group action are
necessarily the stationary points ofHn,ns . Their coordinates
are

x2 = ±ns, s2 = t2 = 0.

W the
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f the system with Hamiltonianns. This flow is a rotation
n C3. We normalize the first normal formHn with regard
o this symmetry and obtain the second normal formHn,ns

hose terms Poisson commute withboth nandns. This fur-
her restricts the set of generators inTable A.1to those, whos
onomials have the same degree in (z1, z3) and (z̄1, z̄3).
hen selecting invariants, we should, of course, pickn and
s. Then we are left with three linearly independent invari
2, s2, andt2, which are bound by the algebraic relation

2
2 + s22 + t22 = n2

s . (D.1)

t can be shown that these invariants generate the ring
n andϕns invariant polynomials with the structure

(n, ns; x2, s2) × {1, t2}.

urthermore, since the second reduced HamiltonianHn,ns is
2 × Z2-invariant, it belongs to a smaller ring

(n, ns; x2, s
2
2),

f. Appendix B.2. This ring is freely generated byx2 ands22.
n other words,Hn,ns can be considered as a function of t
ariables (x2, s

2
2) and, of course, parameters (n, ns).

.2. Reduced phase space and its stratification

Relation(D.1) proves that (for anyns > 0) the reduce
hase space of the second reduced system is yet ano
phereS2

ns
(often called polyad sphere[12]), which can be
-

hen ns = n (i.e., δ = 0), these points correspond to
ymmetric ss (x2 = −ns) and asymmetric as (x2 = ns)
tretch RE. This can be verified directly using the exp
ion forHn,ns at these points given inTable 6. In the limit
s = 0 (i.e.,δ = n) both points correspond to the bending
.

The concrete functionHn,ns may, of course, have mo
tationary points. The latter can lie either on one-dimens
trata or on the generic stratum. If such points bifurcate
s or b, they, typically, should depart on a one-dimens
tratum (circles inFig. 4, left). To find new stationary point
e should consider equations of motion for (x2, s2, t2). The
oisson algebra generated by invariants (1

2x2,
1
2s2,

1
2t2) is a

tandard so(3) algebra with Casimirns. SinceHn,ns is T -
nvariant, it does not depend ont2, so that ˙x2 and ṡ2 vanish
hent2 = 0. Therefore, all time reversal invariant station
olutions (witht2 = 0, i.e., on theT stratum) other than tho
t the fixed points (withs2 = 0) satisfy the equation

t2,Hn,ns}s−1
2 = ax2

2 + bx2 + c = 0,

nd, of course,

2
2 + s22 = n2

s ≤ n2.

romTable 5we obtain

= −0.41839ε4,

= 40.775ε2 + (2.37859n− 1.02332ns)ε
4,
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Fig. D.1. Left: fragment of the diagram inFig. 2with the elementary cell of
the local quantization inSection 3.3(dashed line) and the polyad quantization
in Section 3.4(solid line and shaded area). Filled circles show quantum states
withN = 3, 4, and 5; opaque circles mark classical RE limits; thick solid line
at the minimum energy corresponds to the bending RE. Right: corresponding
cycle bases on the EBK torus.

c = −45.417+ (2.1308ns − 8.0594n)ε2

+(0.39487nns − 0.20549n2 + 0.20054n2
s )ε

4.

(Note thatε is a placeholder for the formal smallness pa-
rameter and should be set to 1.) Solving these equations we
confirm that at very low values ofnandns the second normal
form Hn,ns is the simplest Morse function onS2 with only
two stationary points, a maximum atx2 = −ns and a min-
imum atx2 = ns. Additional pair of equivalent solutions is
characterized inTable 7. This pair appears whenn becomes
larger than

ncrit = 1.24438+ 1.13419δ− 0.35633× 10−2δ2 + · · · ,

wheren ≥ δ = n− ns ≥ 0. (Notice the excellent agreement
with the value ofncrit for theA point in Section 3.2.) The
two new RE are, of course, the local modes. The normal-to-
local mode bifurcation atn = ncrit is a textbook example of
a bifurcation with broken symmetryZ2 (which in our case is
realized asC2 ◦ T orC2); it is also often called a “pitchfork”
bifurcation. Asn > ncrit increases the two points move along
theT -invariant circle wheret2 = 0. TheC2 symmetry makes
these points equivalent; they are absolute minima ofHn,ns

(seeFig. 4, right).
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I mes.
R ordi-
n basis
o
t
t is a
r -

quently, exciting transversal modes with quantum numbers
(n′, n′′) changes the hyperpolyad numbern. The cycle basis
for the same torus in the polyad scheme ofSection 3.4is
(γ0, γ

′−γ0, γ
′′−γ0). As a consequence, local quantum num-

bers in the two schemes differ as illustrated inFig. D.1.
Quantizing the stretching polyad actionns in Section 4.4

has some similarity with that for the bending RE in
Section 3.3, cf. Figs. D.1 and 5. The difference now is that
ω′ andω′′ are assumed to be in 1:1 resonance and there-
fore, n′ and n′′ cannot be used as independent conserved
quantities. We use the “small polyad” numberns = n′ + n′′
instead.
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